DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability and conductivity of cation- and anion-substituted LiBH 4 -based solid-state electrolytes

Abstract

The high-temperature phase of LiBH4 (HT-LiBH4) exhibits a promisingly high lithium ion conductivity but is unstable at room temperature. We use density functional theory (DFT) calculations to investigate the stabilization effect of halogen and alkali cation/anion substitutions on HT-LiBH4 as well the underlying mechanism for the high lithium ion conductivity. We find that increasing the substituent concentration enhances the stabilization of HT-LiBH4 (i.e., the DFT energy difference between the low- and high-temperature forms of substituted LiBH4 is reduced). Cation/anion substitution also leads to a higher Li defect (vacancy, interstitial, and Frenkel) formation energy, thereby reducing the Li defect (vacancy, interstitial, and Frenkel) concentrations. Using DFT migration barriers input into kinetic Monte Carlo simulations and the Materials INTerface (MINT) framework, here we calculate the room-temperature lithium ion conductivities for Li(BH4)1-xIx (x = 0.25 and 0.5) and Li1-yKyBH4 (y = 0.25). Our calculations suggest that the lower I concentration leads to a higher lithium ion conductivity of 5.7 x10-3 S/cm compared with that of Li(BH4)0.5I0.5 (4.2 ×10-5 S/cm) because of the formation of more Li-related defects. Based on our findings, we suggest that the stabilization of HT-LiBH4-based lithium ion conductors can be controlled by carefully tuning the cation/anion substituent concentrations to maximizemore » the lithium ionic conductivities of the specific system.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Northwestern University, Evanston, IL (United States)
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institute of Standards and Technology (NIST); Dow Chemical Company
OSTI Identifier:
1541391
Alternate Identifier(s):
OSTI ID: 1454898
Grant/Contract Number:  
FG02-07ER46433; AC02-05CH11231; AC02-06CH11357; 70NANB14H012; DEAC02-06CH11357; DEFG02-07ER46433
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ionic transport; density functional theory

Citation Formats

Yao, Zhenpeng, Kim, Soo, Michel, Kyle, Zhang, Yongsheng, Aykol, Muratahan, and Wolverton, Chris. Stability and conductivity of cation- and anion-substituted LiBH4 -based solid-state electrolytes. United States: N. p., 2018. Web. doi:10.1103/physrevmaterials.2.065402.
Yao, Zhenpeng, Kim, Soo, Michel, Kyle, Zhang, Yongsheng, Aykol, Muratahan, & Wolverton, Chris. Stability and conductivity of cation- and anion-substituted LiBH4 -based solid-state electrolytes. United States. https://doi.org/10.1103/physrevmaterials.2.065402
Yao, Zhenpeng, Kim, Soo, Michel, Kyle, Zhang, Yongsheng, Aykol, Muratahan, and Wolverton, Chris. Tue . "Stability and conductivity of cation- and anion-substituted LiBH4 -based solid-state electrolytes". United States. https://doi.org/10.1103/physrevmaterials.2.065402. https://www.osti.gov/servlets/purl/1541391.
@article{osti_1541391,
title = {Stability and conductivity of cation- and anion-substituted LiBH4 -based solid-state electrolytes},
author = {Yao, Zhenpeng and Kim, Soo and Michel, Kyle and Zhang, Yongsheng and Aykol, Muratahan and Wolverton, Chris},
abstractNote = {The high-temperature phase of LiBH4 (HT-LiBH4) exhibits a promisingly high lithium ion conductivity but is unstable at room temperature. We use density functional theory (DFT) calculations to investigate the stabilization effect of halogen and alkali cation/anion substitutions on HT-LiBH4 as well the underlying mechanism for the high lithium ion conductivity. We find that increasing the substituent concentration enhances the stabilization of HT-LiBH4 (i.e., the DFT energy difference between the low- and high-temperature forms of substituted LiBH4 is reduced). Cation/anion substitution also leads to a higher Li defect (vacancy, interstitial, and Frenkel) formation energy, thereby reducing the Li defect (vacancy, interstitial, and Frenkel) concentrations. Using DFT migration barriers input into kinetic Monte Carlo simulations and the Materials INTerface (MINT) framework, here we calculate the room-temperature lithium ion conductivities for Li(BH4)1-xIx (x = 0.25 and 0.5) and Li1-yKyBH4 (y = 0.25). Our calculations suggest that the lower I concentration leads to a higher lithium ion conductivity of 5.7 x10-3 S/cm compared with that of Li(BH4)0.5I0.5 (4.2 ×10-5 S/cm) because of the formation of more Li-related defects. Based on our findings, we suggest that the stabilization of HT-LiBH4-based lithium ion conductors can be controlled by carefully tuning the cation/anion substituent concentrations to maximize the lithium ionic conductivities of the specific system.},
doi = {10.1103/physrevmaterials.2.065402},
journal = {Physical Review Materials},
number = 6,
volume = 2,
place = {United States},
year = {Tue Jun 19 00:00:00 EDT 2018},
month = {Tue Jun 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structure and Dynamics for LiBH 4 −LiCl Solid Solutions
journal, December 2009

  • Arnbjerg, Lene M.; Ravnsbæk, Dorthe B.; Filinchuk, Yaroslav
  • Chemistry of Materials, Vol. 21, Issue 24
  • DOI: 10.1021/cm902013k

LiCe(BH 4 ) 3 Cl, a New Lithium-Ion Conductor and Hydrogen Storage Material with Isolated Tetranuclear Anionic Clusters
journal, April 2012

  • Ley, Morten B.; Ravnsbæk, Dorthe B.; Filinchuk, Yaroslav
  • Chemistry of Materials, Vol. 24, Issue 9
  • DOI: 10.1021/cm300792t

Experimental and computational studies on structural transitions in the LiBH4–LiI pseudobinary system
journal, April 2009

  • Oguchi, H.; Matsuo, M.; Hummelshøj, J. S.
  • Applied Physics Letters, Vol. 94, Issue 14
  • DOI: 10.1063/1.3117227

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nanoconfined LiBH 4 as a Fast Lithium Ion Conductor
journal, October 2014

  • Blanchard, Didier; Nale, Angeloclaudio; Sveinbjörnsson, Dadi
  • Advanced Functional Materials, Vol. 25, Issue 2
  • DOI: 10.1002/adfm.201402538

Dissolution of Spinel Oxides and Capacity Losses in 4V Li / LixMn2O4 Cells
journal, January 1996

  • Jang, Dong H.; Shin, Young J.; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7, p. 2204-2211
  • DOI: 10.1149/1.1836981

Lithium Fast-Ionic Conduction in Complex Hydrides: Review and Prospects
journal, January 2011


LiBH4 a new hydrogen storage material
journal, May 2003


All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH 4 Electrolyte
journal, January 2016

  • Das, Supti; Ngene, Peter; Norby, Poul
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0771609jes

Projector augmented-wave method
journal, December 1994


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

A high-performance anode material based on FeMnO3/graphene composite
journal, February 2017


Electronic structure of ternary hydrides based on light elements
journal, December 2005


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Bromide substitution in lithium borohydride, LiBH4–LiBr
journal, December 2011


Lithium superionic conduction in lithium borohydride accompanied by structural transition
journal, November 2007

  • Matsuo, Motoaki; Nakamori, Yuko; Orimo, Shin-ichi
  • Applied Physics Letters, Vol. 91, Issue 22
  • DOI: 10.1063/1.2817934

Cubine, a Quasi Two-Dimensional Copper–Bismuth Nanosheet
journal, November 2017


Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition
journal, February 2009

  • Matsuo, Motoaki; Takamura, Hitoshi; Maekawa, Hideki
  • Applied Physics Letters, Vol. 94, Issue 8
  • DOI: 10.1063/1.3088857

Nuclear Magnetic Resonance Studies of BH 4 Reorientations and Li Diffusion in LiLa(BH 4 ) 3 Cl
journal, July 2013

  • Skripov, Alexander V.; Soloninin, Alexei V.; Ley, Morten B.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 29
  • DOI: 10.1021/jp403746m

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

van der Waals Interactions in Layered Lithium Cobalt Oxides
journal, August 2015

  • Aykol, Muratahan; Kim, Soo; Wolverton, C.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 33
  • DOI: 10.1021/acs.jpcc.5b06240

Algorithm for generating derivative structures
journal, June 2008


Fast Mass Transport Kinetics in B 20 H 16 : A High-Capacity Hydrogen Storage Material
journal, September 2013

  • Michel, Kyle Jay; Zhang, Yongsheng; Wolverton, C.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 38
  • DOI: 10.1021/jp402669u

First-principles insight into the degeneracy of ground-state LiBH 4 structures
journal, September 2012


First principles computational materials design for energy storage materials in lithium ion batteries
journal, January 2009

  • Meng, Ying Shirley; Arroyo-de Dompablo, M. Elena
  • Energy & Environmental Science, Vol. 2, Issue 6
  • DOI: 10.1039/b901825e

Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries
journal, August 2014

  • Aykol, Muratahan; Kirklin, Scott; Wolverton, C.
  • Advanced Energy Materials, Vol. 4, Issue 17
  • DOI: 10.1002/aenm.201400690

Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
journal, August 2017


First-principles investigation of phase stability in Li x CoO 2
journal, August 1998


Electrochemical energy storage in a sustainable modern society
journal, January 2014


Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−x Zrx(PO4)3 materials followed by NMR and impedance spectroscopy
journal, January 2007


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Anharmonicity in LiBH4–LiI induced by anion exchange and temperature
journal, July 2010

  • Borgschulte, A.; Gremaud, R.; Kato, S.
  • Applied Physics Letters, Vol. 97, Issue 3
  • DOI: 10.1063/1.3467260

Theoretical and Experimental Study of LiBH4-LiCl Solid Solution
journal, March 2012

  • Zavorotynska, Olena; Corno, Marta; Pinatel, Eugenio
  • Crystals, Vol. 2, Issue 1
  • DOI: 10.3390/cryst2010144

Li-ion Conduction in the LiBH 4 :LiI System from Density Functional Theory Calculations and Quasi-Elastic Neutron Scattering
journal, March 2013

  • Myrdal, Jon Steinar Gardarsson; Blanchard, Didier; Sveinbjörnsson, Dadi
  • The Journal of Physical Chemistry C, Vol. 117, Issue 18
  • DOI: 10.1021/jp311980h

Revealing the Conversion Mechanism of Transition Metal Oxide Electrodes during Lithiation from First-Principles
journal, October 2017


A review of conduction phenomena in Li-ion batteries
journal, December 2010


New Li Ion Conductors and Solid State Hydrogen Storage Materials: LiM(BH 4 ) 3 Cl, M = La, Gd
journal, September 2012

  • Ley, Morten B.; Boulineau, Sylvain; Janot, Raphaël
  • The Journal of Physical Chemistry C, Vol. 116, Issue 40
  • DOI: 10.1021/jp307762g

Multistep Lithiation of Tin Sulfide: An Investigation Using in Situ Electron Microscopy
journal, March 2018


Structural Stability of Complex Hydrides: L i B H 4 Revisited
journal, September 2004


A Lithium Amide-Borohydride Solid-State Electrolyte with Lithium-Ion Conductivities Comparable to Liquid Electrolytes
journal, June 2017

  • Yan, Yigang; Kühnel, Ruben-Simon; Remhof, Arndt
  • Advanced Energy Materials, Vol. 7, Issue 19
  • DOI: 10.1002/aenm.201700294

Hydrogen storage in calcium alanate: First-principles thermodynamics and crystal structures
journal, February 2007


Reactivity of LiBH 4 :  In Situ Synchrotron Radiation Powder X-ray Diffraction Study
journal, January 2008

  • Mosegaard, Lene; Møller, Bitten; Jørgensen, Jens-Erik
  • The Journal of Physical Chemistry C, Vol. 112, Issue 4
  • DOI: 10.1021/jp076999v

Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Symmetry building Monte Carlo-based crystal structure prediction
journal, May 2014


Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism
journal, August 2016


Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Iodide substitution in lithium borohydride, LiBH4–LiI
journal, August 2011


Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4
journal, June 2011


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Identification of cathode materials for lithium batteries guided by first-principles calculations
journal, April 1998

  • Ceder, G.; Chiang, Y. -M.; Sadoway, D. R.
  • Nature, Vol. 392, Issue 6677
  • DOI: 10.1038/33647

Surface phase diagram and stability of (001) and (111) LiM n 2 O 4 spinel oxides
journal, September 2015


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Mechanism for the decomposition of lithium borohydride
journal, April 2012


Nanoconfined LiBH 4 and Enhanced Mobility of Li and BH 4 Studied by Solid-State NMR
journal, October 2012

  • Verkuijlen, Margriet H. W.; Ngene, Peter; de Kort, Daan W.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 42
  • DOI: 10.1021/jp306175b

Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH 4 –LiI Solid Solution
journal, February 2013

  • Sveinbjörnsson, Dadi; Myrdal, Jon Steinar Gardarsson; Blanchard, Didier
  • The Journal of Physical Chemistry C, Vol. 117, Issue 7
  • DOI: 10.1021/jp310050g

Controlling the Intercalation Chemistry to Design High-Performance Dual-Salt Hybrid Rechargeable Batteries
journal, November 2014

  • Cho, Jae-Hyun; Aykol, Muratahan; Kim, Soo
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508463z

Tuning the Decomposition Temperature in Complex Hydrides: Synthesis of a Mixed Alkali Metal Borohydride
journal, March 2008

  • Nickels, E. Anne; Jones, Martin Owen; David, William I. F.
  • Angewandte Chemie International Edition, Vol. 47, Issue 15
  • DOI: 10.1002/anie.200704949

High ionic conductivity in lithium lanthanum titanate
journal, June 1993

  • Inaguma, Yoshiyuki; Liquan, Chen; Itoh, Mitsuru
  • Solid State Communications, Vol. 86, Issue 10, p. 689-693
  • DOI: 10.1016/0038-1098(93)90841-A

Tailoring ceramics for specific applications: A case study of the development of all-solid-state lithium batteries
journal, January 2005

  • Thangadurai, V.; Schwenzel, J.; Weppner, W.
  • Ionics, Vol. 11, Issue 1-2
  • DOI: 10.1007/BF02430397

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Complex hydrides as room-temperature solid electrolytes for rechargeable batteries
journal, March 2016


Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
journal, July 2009

  • Hummelshøj, J. S.; Landis, D. D.; Voss, J.
  • The Journal of Chemical Physics, Vol. 131, Issue 1
  • DOI: 10.1063/1.3148892

Halide-Stabilized LiBH 4 , a Room-Temperature Lithium Fast-Ion Conductor
journal, January 2009

  • Maekawa, Hideki; Matsuo, Motoaki; Takamura, Hitoshi
  • Journal of the American Chemical Society, Vol. 131, Issue 3
  • DOI: 10.1021/ja807392k

Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene
journal, June 2015

  • Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo
  • Advanced Energy Materials, Vol. 5, Issue 17
  • DOI: 10.1002/aenm.201500646

Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie International Edition, Vol. 47, Issue 4
  • DOI: 10.1002/anie.200703900

Hydrogen storage properties of LiBH4
journal, August 2003


Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Dynamic imaging of metastable reaction pathways in lithiated cobalt oxide electrodes
journal, February 2018


First-principles free energy calculations of the structural phase transition in LiBH 4 with I, Cl, Na, and K substitution
journal, December 2013