skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

Abstract

Here, the dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are explored by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

Authors:
ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1540203
Alternate Identifier(s):
OSTI ID: 1432905
Grant/Contract Number:  
SC0001605
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Bonde, Jeffrey. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling. United States: N. p., 2018. Web. doi:10.1063/1.5029301.
Bonde, Jeffrey. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling. United States. doi:10.1063/1.5029301.
Bonde, Jeffrey. Thu . "Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling". United States. doi:10.1063/1.5029301. https://www.osti.gov/servlets/purl/1540203.
@article{osti_1540203,
title = {Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling},
author = {Bonde, Jeffrey},
abstractNote = {Here, the dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are explored by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.},
doi = {10.1063/1.5029301},
journal = {Physics of Plasmas},
number = 4,
volume = 25,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetic field compression and evolution in laser-produced plasma expansions
journal, January 1986

  • Kacenjar, S.; Hausman, M.; Keskinen, M.
  • Physics of Fluids, Vol. 29, Issue 6
  • DOI: 10.1063/1.865578

Expansion of a tri-axial gas ellipsoid in a regular behavior
journal, January 1965


Étude expérimentale de l'intéraction avec un champ magnétique d'un plasma créé par irradiation laser de solides
journal, January 1973


Preliminary study of the CRRES magnetospheric barium releases
journal, January 1992

  • Huba, J. D.; Bernhardt, P. A.; Lyon, J. G.
  • Journal of Geophysical Research, Vol. 97, Issue A1
  • DOI: 10.1029/91JA02144

Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling
journal, April 2018

  • Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5029302

Laser-plasma diamagnetism in the presence of an ambient magnetized plasma
journal, January 2004

  • VanZeeland, M.; Gekelman, W.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1628233

Sub‐Alfvénic plasma expansion
journal, October 1993

  • Ripin, B. H.; Huba, J. D.; McLean, E. A.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 10
  • DOI: 10.1063/1.860825

The phenomenology of the mass motion of a high altitude nuclear explosion
journal, July 1965


The physics of ion decoupling in magnetized plasma expansions: PHYSICS OF ION DECOUPLING IN PLASMA EXPANSIONS
journal, November 2011

  • Hewett, Dennis W.; Brecht, Stephen H.; Larson, David J.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A11
  • DOI: 10.1029/2011JA016904

Observations and theory of the AMPTE magnetotail barium releases
journal, January 1987

  • Bernhardt, P. A.; Roussel-Dupre, R. A.; Pongratz, M. B.
  • Journal of Geophysical Research, Vol. 92, Issue A6
  • DOI: 10.1029/JA092iA06p05777

Dynamics of exploding plasmas in a large magnetized plasma
journal, January 2013

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773911

Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma
journal, March 2017


Temperature and density of an expanding laser produced plasma
journal, March 1974


Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma
journal, August 2013

  • Clark, S. E.; Winske, D.; Schaeffer, D. B.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4819251

Collisionless dispersion of an ionized cloud into a homogeneous magnetized plasma
journal, January 1979

  • Golubev, A. I.; Solov'ev, A. A.; Terekhin, V. A.
  • Journal of Applied Mechanics and Technical Physics, Vol. 19, Issue 5
  • DOI: 10.1007/BF00850600

The collisionless deceleration of an ionized cloud dispersing in a uniform plasma in a magnetic field
journal, January 1984

  • Bashurin, V. P.; Golubev, A. I.; Terekhin, V. A.
  • Journal of Applied Mechanics and Technical Physics, Vol. 24, Issue 5
  • DOI: 10.1007/BF00905870

Currents and shear Alfvén wave radiation generated by an exploding laser-produced plasma: Perpendicular incidence
journal, May 2003

  • VanZeeland, M.; Gekelman, W.; Vincena, S.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1564598

Magnetic Field Confinement of Laser Irradiated Solid Particle Plasmas
journal, January 1970


Damping of Underwater Explosion Bubble Oscillations
journal, October 1956

  • Keller, Joseph B.; Kolodner, Ignace I.
  • Journal of Applied Physics, Vol. 27, Issue 10
  • DOI: 10.1063/1.1722221

Electrostatic structure of a magnetized laser-produced plasma
journal, November 2015


Large-Larmor-radius interchange instability
journal, November 1987


Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
journal, July 2012

  • Schaeffer, D. B.; Everson, E. T.; Winske, D.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736846

Collisionless Damping of Nonlinear Plasma Oscillations
journal, January 1965


Structure of an Exploding Laser-Produced Plasma
journal, November 2010


Self-similar analytical model of plasma expansion in a magnetic field
journal, November 2011


High-beta effects and anomalous diffusion in plasmas expanding into magnetic fields
journal, January 1976


Dynamics of a plasma expanding into a uniform magnetic field
journal, August 1989

  • Gisler, Galen; Lemons, Don S.
  • Journal of Geophysical Research: Space Physics, Vol. 94, Issue A8
  • DOI: 10.1029/JA094iA08p10145

Laser-produced plasma expansion in a uniform magnetic field
journal, December 1992

  • Begimkulov, U. S.; Bryunetkin, B. A.; Dyakin, V. M.
  • Laser and Particle Beams, Vol. 10, Issue 4
  • DOI: 10.1017/S0263034600004663

VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
journal, August 1917

  • Rayleigh, Lord
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 34, Issue 200
  • DOI: 10.1080/14786440808635681

Experimental study of collisionless super-Alfvénic interaction of interpenetrating plasma flows
journal, May 2015

  • Shaikhislamov, I. F.; Zakharov, Yu. P.; Posukh, V. G.
  • Plasma Physics Reports, Vol. 41, Issue 5
  • DOI: 10.1134/S1063780X15050050

On the generation of magnetized collisionless shocks in the large plasma device
journal, April 2017

  • Schaeffer, D. B.; Winske, D.; Larson, D. J.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978882

Dynamics of exploding plasmas in a magnetic field
journal, September 1991


Early-Time Model of Laser Plasma Expansion
journal, January 1971


Quasielectrostatic whistler wave radiation from the hot electron emission of a laser-produced plasma
journal, July 2008

  • Vincena, Stephen; Gekelman, Walter; Van Zeeland, M. A.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2956994