DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions

Abstract

A new nodal mixed finite element is proposed for the simulation of linear elastodynamics and wave propagation problems in time domain. Our method is based on equal-order interpolation discrete spaces for both the velocity (or displacement) and stress (or strain) tensor variables. The mixed form is derived using either the velocity/stress or velocity/strain pair of unknowns, the latter being instrumental in extensions of the method to nonlinear mechanics. The proposed approach works equally well on hexahedral or tetrahedral grids and, for this reason, it is suitable for time-domain engineering applications in complex geometry. The peculiarity of the proposed approach is the use of the rate form of the stress update equation, which yields a set of governing equations with the structure of a non-dissipative space/time Friedrichs’ system. We complement standard traction boundary conditions for the stress with strongly and weakly enforced boundary conditions for the velocity (or displacement). Weakly enforced boundary conditions are particularly suitable when considering complex geometrical shapes, because they do not require dedicated data structures for the imposition of the boundary degrees of freedom, but, rather, they utilize the structure of the variational formulation. Here we also show how the framework of weakly enforced boundary conditions canmore » be used to develop variational forms for multi-domain simulations of heterogeneous media. A complete analysis including stability and convergence proofs is included, in the case of a space–time variational approach. A series of computational tests are used to demonstrate and verify the performance of the proposed approach.« less

Authors:
ORCiD logo [1];  [1];  [2]
  1. Duke University, Durham, NC (United States)
  2. University of Texas at El Paso, TX (United States)
Publication Date:
Research Org.:
Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); ExxonMobil Upstream Research Company; US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1538113
Alternate Identifier(s):
OSTI ID: 1549632
Grant/Contract Number:  
SC0012169; N00014-14-1-0311
Resource Type:
Accepted Manuscript
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Volume: 325; Journal Issue: C; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; weak boundary conditions; wave equation; nodal stress or nodal strain; elastodynamics; stabilized methods; variational multiscale analysis

Citation Formats

Scovazzi, G., Song, T., and Zeng, X. A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions. United States: N. p., 2017. Web. doi:10.1016/j.cma.2017.07.018.
Scovazzi, G., Song, T., & Zeng, X. A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions. United States. https://doi.org/10.1016/j.cma.2017.07.018
Scovazzi, G., Song, T., and Zeng, X. Tue . "A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions". United States. https://doi.org/10.1016/j.cma.2017.07.018. https://www.osti.gov/servlets/purl/1538113.
@article{osti_1538113,
title = {A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions},
author = {Scovazzi, G. and Song, T. and Zeng, X.},
abstractNote = {A new nodal mixed finite element is proposed for the simulation of linear elastodynamics and wave propagation problems in time domain. Our method is based on equal-order interpolation discrete spaces for both the velocity (or displacement) and stress (or strain) tensor variables. The mixed form is derived using either the velocity/stress or velocity/strain pair of unknowns, the latter being instrumental in extensions of the method to nonlinear mechanics. The proposed approach works equally well on hexahedral or tetrahedral grids and, for this reason, it is suitable for time-domain engineering applications in complex geometry. The peculiarity of the proposed approach is the use of the rate form of the stress update equation, which yields a set of governing equations with the structure of a non-dissipative space/time Friedrichs’ system. We complement standard traction boundary conditions for the stress with strongly and weakly enforced boundary conditions for the velocity (or displacement). Weakly enforced boundary conditions are particularly suitable when considering complex geometrical shapes, because they do not require dedicated data structures for the imposition of the boundary degrees of freedom, but, rather, they utilize the structure of the variational formulation. Here we also show how the framework of weakly enforced boundary conditions can be used to develop variational forms for multi-domain simulations of heterogeneous media. A complete analysis including stability and convergence proofs is included, in the case of a space–time variational approach. A series of computational tests are used to demonstrate and verify the performance of the proposed approach.},
doi = {10.1016/j.cma.2017.07.018},
journal = {Computer Methods in Applied Mechanics and Engineering},
number = C,
volume = 325,
place = {United States},
year = {Tue Jul 25 00:00:00 EDT 2017},
month = {Tue Jul 25 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity
journal, November 1995

  • de Souza Neto, E. A.; Perić, Djordje; Huang, G. C.
  • Communications in Numerical Methods in Engineering, Vol. 11, Issue 11
  • DOI: 10.1002/cnm.1640111109

Two classes of mixed finite element methods
journal, July 1988

  • Franca, Leopoldo P.; Hughes, Thomas J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 69, Issue 1
  • DOI: 10.1016/0045-7825(88)90168-5

Stabilized finite element method for viscoplastic flow: formulation and a simple progressive solution strategy
journal, June 2001

  • Maniatty, Antoinette M.; Liu, Yong; Klaas, Ottmar
  • Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issue 35-36
  • DOI: 10.1016/S0045-7825(00)00346-7

An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics
journal, November 2015


Finite calculus formulation for incompressible solids using linear triangles and tetrahedra
journal, February 2004

  • Oñate, Eugenio; Rojek, Jerzy; Taylor, Robert L.
  • International Journal for Numerical Methods in Engineering, Vol. 59, Issue 11
  • DOI: 10.1002/nme.922

A comparative study of different sets of variables for solving compressible and incompressible flows
journal, January 1998

  • Hauke, Guillermo; Hughes, Thomas J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 153, Issue 1-2
  • DOI: 10.1016/S0045-7825(97)00043-1

A Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity
journal, January 2005

  • Masud, Arif; Xia, Kaiming
  • Journal of Applied Mechanics, Vol. 72, Issue 5
  • DOI: 10.1115/1.1985433

A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity
journal, March 2016

  • Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier
  • Computer Methods in Applied Mechanics and Engineering, Vol. 300
  • DOI: 10.1016/j.cma.2015.11.010

Polygonal finite elements for finite elasticity: POLYGONAL FINITE ELEMENTS FOR FINITE ELASTICITY
journal, November 2014

  • Chi, Heng; Talischi, Cameron; Lopez-Pamies, Oscar
  • International Journal for Numerical Methods in Engineering, Vol. 101, Issue 4
  • DOI: 10.1002/nme.4802

A mixed three-field FE formulation for stress accurate analysis including the incompressible limit
journal, January 2015

  • Chiumenti, M.; Cervera, M.; Codina, R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 283
  • DOI: 10.1016/j.cma.2014.08.004

Mixed finite elements for elasticity
journal, September 2002


An analysis of some mixed-enhanced finite element for plane linear elasticity
journal, July 2005

  • Auricchio, F.; Beirão da Veiga, L.; Lovadina, C.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 194, Issue 27-29
  • DOI: 10.1016/j.cma.2004.07.028

Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind
journal, July 1971

  • Nitsche, J.
  • Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 36, Issue 1
  • DOI: 10.1007/BF02995904

A 10-node composite tetrahedral finite element for solid mechanics: COMPOSITE TETRAHEDRAL FINITE ELEMENT
journal, February 2016

  • Ostien, J. T.; Foulk, J. W.; Mota, A.
  • International Journal for Numerical Methods in Engineering, Vol. 107, Issue 13
  • DOI: 10.1002/nme.5218

Equivalence of Finite Elements for Nearly Incompressible Elasticity
journal, March 1977

  • Hughes, T. J. R.
  • Journal of Applied Mechanics, Vol. 44, Issue 1
  • DOI: 10.1115/1.3423994

A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics
journal, December 2010

  • Scovazzi, G.; Shadid, J. N.; Love, E.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 49-52
  • DOI: 10.1016/j.cma.2010.03.027

Mixed linear/linear simplicial elements for incompressible elasticity and plasticity
journal, December 2003

  • Cervera, M.; Chiumenti, M.; Valverde, Q.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 192, Issue 49-50
  • DOI: 10.1016/j.cma.2003.07.007

On numerically accurate finite element solutions in the fully plastic range
journal, September 1974

  • Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 4, Issue 2
  • DOI: 10.1016/0045-7825(74)90032-2

A stabilized nodally integrated tetrahedral
journal, January 2006

  • Puso, M. A.; Solberg, J.
  • International Journal for Numerical Methods in Engineering, Vol. 67, Issue 6
  • DOI: 10.1002/nme.1651

Space-time finite element methods for elastodynamics: Formulations and error estimates
journal, February 1988

  • Hughes, Thomas J. R.; Hulbert, Gregory M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 66, Issue 3
  • DOI: 10.1016/0045-7825(88)90006-0

A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and <mml:math altimg="si67.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:math> methods for linear triangles and tetrahedra
journal, December 2013

  • Masud, Arif; Truster, Timothy J.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 267
  • DOI: 10.1016/j.cma.2013.08.010

Triangles and tetrahedra in explicit dynamic codes for solids
journal, October 1998


A generalized view on Galilean invariance in stabilized compressible flow computations
journal, September 2010

  • Scovazzi, G.; Love, E.
  • International Journal for Numerical Methods in Fluids, Vol. 64, Issue 10-12
  • DOI: 10.1002/fld.2417

A mixed displacement-pressure formulation for numerical analysis of plastic failure
journal, January 1997


On finite element formulations for nearly incompressible linear elasticity
journal, August 2007


Stress–Velocity Complete Radiation Boundary Conditions
journal, July 2013

  • Rabinovich, Daniel; Givoli, Dan; Hagstrom, Thomas
  • Journal of Computational Acoustics, Vol. 21, Issue 03
  • DOI: 10.1142/S0218396X13500033

A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics
journal, February 1986

  • Hughes, T. J. R.; Franca, L. P.; Mallet, M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 54, Issue 2
  • DOI: 10.1016/0045-7825(86)90127-1

Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form
journal, November 2016

  • Rossi, S.; Abboud, N.; Scovazzi, G.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 311
  • DOI: 10.1016/j.cma.2016.07.015

A class of mixed assumed strain methods and the method of incompatible modes
journal, June 1990

  • Simo, J. C.; Rifai, M. S.
  • International Journal for Numerical Methods in Engineering, Vol. 29, Issue 8
  • DOI: 10.1002/nme.1620290802

A mixed-enhanced strain method
journal, April 2000


A priori estimates for mixed finite element methods for the wave equation
journal, September 1990

  • Cowsat, Lawrence C.; Dupont, Todd F.; Wheeler, Mary F.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 82, Issue 1-3
  • DOI: 10.1016/0045-7825(90)90165-I

Nonconforming Mixed Elements for Elasticity
journal, March 2003

  • Arnold, Douglas N.; Winther, Ragnar
  • Mathematical Models and Methods in Applied Sciences, Vol. 13, Issue 03
  • DOI: 10.1142/S0218202503002507

A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations
journal, August 1991

  • Shakib, Farzin; Hughes, Thomas J. R.; Johan, Zdeněk
  • Computer Methods in Applied Mechanics and Engineering, Vol. 89, Issue 1-3
  • DOI: 10.1016/0045-7825(91)90041-4

A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations
journal, November 1986

  • Hughes, Thomas J. R.; Franca, Leopoldo P.; Balestra, Marc
  • Computer Methods in Applied Mechanics and Engineering, Vol. 59, Issue 1
  • DOI: 10.1016/0045-7825(86)90025-3

Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes
journal, March 2000


A unified approach to compressible and incompressible flows
journal, March 1994


A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra
journal, August 2004

  • Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.
  • International Journal of Plasticity, Vol. 20, Issue 8-9
  • DOI: 10.1016/j.ijplas.2003.11.009

Mixed Methods for Elastodynamics with Weak Symmetry
journal, January 2014

  • Arnold, Douglas N.; Lee, Jeonghun J.
  • SIAM Journal on Numerical Analysis, Vol. 52, Issue 6
  • DOI: 10.1137/13095032X

Stabilized shock hydrodynamics: I. A Lagrangian method
journal, January 2007

  • Scovazzi, G.; Christon, M. A.; Hughes, T. J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 196, Issue 4-6
  • DOI: 10.1016/j.cma.2006.08.008

On a tensor cross product based formulation of large strain solid mechanics
journal, May 2016


A mixed-enhanced formulation tetrahedral finite elements
journal, January 2000


A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations
journal, November 2002

  • Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 191, Issue 46
  • DOI: 10.1016/S0045-7825(02)00443-7

A Nitsche method for wave propagation problems in time domain
journal, August 2015


Triangular composite finite elements
journal, January 2000


Galilean invariance and stabilized methods for compressible flows: GALILEAN INVARIANCE AND STABILIZED METHODS FOR COMPRESSIBLE FLOWS
journal, February 2007

  • Scovazzi, G.
  • International Journal for Numerical Methods in Fluids, Vol. 54, Issue 6-8
  • DOI: 10.1002/fld.1423

A Priori Estimates for Mixed Finite Element Approximations of Second-Order Hyperbolic Equations with Absorbing Boundary Conditions
journal, April 1996

  • Cowsar, Lawrence C.; Dupont, Todd F.; Wheeler, Mary F.
  • SIAM Journal on Numerical Analysis, Vol. 33, Issue 2
  • DOI: 10.1137/0733026

A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems
journal, July 1987

  • Hughes, Thomas J. R.; Franca, Leopoldo P.; Mallet, Michel
  • Computer Methods in Applied Mechanics and Engineering, Vol. 63, Issue 1
  • DOI: 10.1016/0045-7825(87)90125-3

Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications
journal, January 2000


A hybridizable discontinuous Galerkin formulation for non-linear elasticity
journal, January 2015

  • Kabaria, Hardik; Lew, Adrian J.; Cockburn, Bernardo
  • Computer Methods in Applied Mechanics and Engineering, Vol. 283
  • DOI: 10.1016/j.cma.2014.08.012

A vertex centred Finite Volume Jameson–Schmidt–Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics
journal, February 2014


Discontinuous Galerkin finite element methods for second order hyperbolic problems
journal, August 1993


A mixed-enhanced strain method
journal, April 2000


A higher-order Godunov method for modeling finite deformation in elastic-plastic solids
journal, January 1991

  • Trangenstein, John A.; Colella, Phillip
  • Communications on Pure and Applied Mathematics, Vol. 44, Issue 1
  • DOI: 10.1002/cpa.3160440103

P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method
journal, April 1986


F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking
journal, January 2005

  • Neto, E. A. de Souza; Pires, F. M. Andrade; Owen, D. R. J.
  • International Journal for Numerical Methods in Engineering, Vol. 62, Issue 3
  • DOI: 10.1002/nme.1187

Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics
journal, January 2014

  • Lee, Chun Hean; Gil, Antonio J.; Bonet, Javier
  • Computer Methods in Applied Mechanics and Engineering, Vol. 268
  • DOI: 10.1016/j.cma.2013.09.004

On mixed finite element methods for linear elastodynamics
journal, December 1992


Generalization of selective integration procedures to anisotropic and nonlinear media
journal, September 1980

  • Hughes, Thomas J. R.
  • International Journal for Numerical Methods in Engineering, Vol. 15, Issue 9
  • DOI: 10.1002/nme.1620150914

Higher order stabilized finite element method for hyperelastic finite deformation
journal, January 2002

  • Maniatty, Antoinette M.; Liu, Yong; Klaas, Ottmar
  • Computer Methods in Applied Mechanics and Engineering, Vol. 191, Issue 13-14
  • DOI: 10.1016/S0045-7825(01)00335-8

A computational framework for polyconvex large strain elasticity
journal, January 2015

  • Bonet, Javier; Gil, Antonio J.; Ortigosa, Rogelio
  • Computer Methods in Applied Mechanics and Engineering, Vol. 283
  • DOI: 10.1016/j.cma.2014.10.002

A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations
journal, May 1989

  • Hughes, Thomas J. R.; Franca, Leopoldo P.; Hulbert, Gregory M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 73, Issue 2
  • DOI: 10.1016/0045-7825(89)90111-4

Stabilized finite element method for viscoplastic flow: formulation with state variable evolution
journal, January 2002

  • Maniatty, Antoinette M.; Liu, Yong
  • International Journal for Numerical Methods in Engineering, Vol. 56, Issue 2
  • DOI: 10.1002/nme.554

Mixed finite element methods for linear elasticity with weakly imposed symmetry
journal, October 2007


A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems
journal, November 1986

  • Hughes, Thomas J. R.; Mallet, Michel
  • Computer Methods in Applied Mechanics and Engineering, Vol. 58, Issue 3
  • DOI: 10.1016/0045-7825(86)90153-2

CBS-based stabilization in explicit solid dynamics
journal, June 2006

  • Rojek, Jerzy; Oñate, Eugenio; Taylor, Robert L.
  • International Journal for Numerical Methods in Engineering, Vol. 66, Issue 10
  • DOI: 10.1002/nme.1689

A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework
journal, January 2007


A stabilized mixed finite element method for finite elasticity.
journal, November 1999

  • Klaas, Ottmar; Maniatty, Antoinette; Shephard, Mark S.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 180, Issue 1-2
  • DOI: 10.1016/S0045-7825(99)00059-6

Stabilized finite element formulation for elastic–plastic finite deformations
journal, February 2005

  • Ramesh, Binoj; Maniatty, Antoinette M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 194, Issue 6-8
  • DOI: 10.1016/j.cma.2004.06.025

Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity
journal, March 2015

  • Cervera, M.; Chiumenti, M.; Benedetti, L.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 285
  • DOI: 10.1016/j.cma.2014.11.040

Error-bounds for finite element method
journal, January 1971


Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach
journal, October 2012


A uniform nodal strain tetrahedron with isochoric stabilization
journal, April 2009

  • Gee, M. W.; Dohrmann, C. R.; Key, S. W.
  • International Journal for Numerical Methods in Engineering, Vol. 78, Issue 4
  • DOI: 10.1002/nme.2493

A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity
journal, January 2015

  • Bonet, Javier; Gil, Antonio J.; Lee, Chun Hean
  • Computer Methods in Applied Mechanics and Engineering, Vol. 283
  • DOI: 10.1016/j.cma.2014.09.024

A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics
journal, July 2014

  • Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier
  • Computer Methods in Applied Mechanics and Engineering, Vol. 276
  • DOI: 10.1016/j.cma.2014.04.006

The Double Absorbing Boundary method for a class of anisotropic elastic media
journal, March 2017

  • Rabinovich, Daniel; Givoli, Dan; Bielak, Jacobo
  • Computer Methods in Applied Mechanics and Engineering, Vol. 315
  • DOI: 10.1016/j.cma.2016.10.035

Simple stabilizing matrices for the computation of compressible flows in primitive variables
journal, October 2001


Mixed finite element methods — Reduced and selective integration techniques: A unification of concepts
journal, July 1978

  • Malkus, David S.; Hughes, Thomas J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 15, Issue 1
  • DOI: 10.1016/0045-7825(78)90005-1

Numerical algorithms for strong discontinuities in elastic—plastic solids
journal, November 1992


A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms
journal, May 1991

  • Shakib, Farzin; Hughes, Thomas J. R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 87, Issue 1
  • DOI: 10.1016/0045-7825(91)90145-V

A new framework for large strain electromechanics based on convex multi-variable strain energies: Variational formulation and material characterisation
journal, April 2016

  • Gil, Antonio J.; Ortigosa, Rogelio
  • Computer Methods in Applied Mechanics and Engineering, Vol. 302
  • DOI: 10.1016/j.cma.2015.11.036

An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics
journal, August 2003

  • Li, Xikui; Han, Xianhong; Pastor, M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 192, Issue 35-36
  • DOI: 10.1016/S0045-7825(03)00378-5

Mixed stabilized finite element methods in nonlinear solid mechanics
journal, August 2010

  • Cervera, M.; Chiumenti, M.; Codina, R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 37-40
  • DOI: 10.1016/j.cma.2010.04.005

Mixed stabilized finite element methods in nonlinear solid mechanics
journal, August 2010

  • Cervera, M.; Chiumenti, M.; Codina, R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 37-40
  • DOI: 10.1016/j.cma.2010.04.006

A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems
journal, September 2003


A new framework for large strain electromechanics based on convex multi-variable strain energies: Finite Element discretisation and computational implementation
journal, April 2016

  • Ortigosa, Rogelio; Gil, Antonio J.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 302
  • DOI: 10.1016/j.cma.2015.12.007

A second-order Godunov algorithm for two-dimensional solid mechanics
journal, September 1994


A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems
journal, November 1986

  • Hughes, Thomas J. R.; Mallet, Michel
  • Computer Methods in Applied Mechanics and Engineering, Vol. 58, Issue 3
  • DOI: 10.1016/0045-7825(86)90152-0

Stabilized finite elements with equal order of interpolation for soil dynamics problems
journal, March 1999

  • Pastor, M.; Zienkiewicz, O. C.; Li, T.
  • Archives of Computational Methods in Engineering, Vol. 6, Issue 1
  • DOI: 10.1007/BF02828328

A new finite element formulation for computational fluid dynamics: II. Beyond SUPG
journal, March 1986

  • Hughes, Thomas J. R.; Mallet, Michel; Akira, Mizukami
  • Computer Methods in Applied Mechanics and Engineering, Vol. 54, Issue 3
  • DOI: 10.1016/0045-7825(86)90110-6

A continuous space-time finite element method for the wave equation
journal, January 1996


Numerical solution of the acoustic wave equation using Raviart–Thomas elements
journal, September 2007


Tetrahedral composite finite elements
journal, January 2001

  • Thoutireddy, P.; Molinari, J. F.; Repetto, E. A.
  • International Journal for Numerical Methods in Engineering, Vol. 53, Issue 6
  • DOI: 10.1002/nme.337

Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics
journal, January 2015


Design of simple low order finite elements for large strain analysis of nearly incompressible solids
journal, August 1996

  • de Souza Neto, E. A.; Perić, D.; Dutko, M.
  • International Journal of Solids and Structures, Vol. 33, Issue 20-22
  • DOI: 10.1016/0020-7683(95)00259-6

An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains
journal, April 2004

  • Andrade Pires, F. M.; de Souza Neto, E. A.; de la Cuesta Padilla, J. L.
  • Communications in Numerical Methods in Engineering, Vol. 20, Issue 7
  • DOI: 10.1002/cnm.697

Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Motivation, formulation, and numerical examples
journal, August 2008

  • Eyck, Alex Ten; Celiker, Fatih; Lew, Adrian
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 45-48
  • DOI: 10.1016/j.cma.2008.02.020

Discontinuous Galerkin methods for non-linear elasticity
journal, January 2006

  • Ten Eyck, A.; Lew, A.
  • International Journal for Numerical Methods in Engineering, Vol. 67, Issue 9
  • DOI: 10.1002/nme.1667

Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics
journal, March 2013


Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires
journal, June 1970


On stability and convergence of projection methods based on pressure Poisson equation
journal, May 1998


Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Analytical estimates
journal, June 2008

  • Eyck, Alex Ten; Celiker, Fatih; Lew, Adrian
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 33-40
  • DOI: 10.1016/j.cma.2008.02.022

A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics
journal, April 2009