skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 3, 2020

Title: Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum

Abstract

We use data from the first-year observations of the DES collaboration to measure the galaxy angular power spectrum (APS), and search for its BAO feature. We test our methodology in a sample of 1800 DES Y1-like mock catalogues. We use the pseudo-C method to estimate the APS and the mock catalogues to estimate its covariance matrix. We use templates to model the measured spectra and estimate template parameters firstly from the C ’s of the mocks using two different methods, a maximum likelihood estimator and a Markov Chain Monte Carlo, finding consistent results with a good reduced χ 2. Robustness tests are performed to estimate the impact of different choices of settings used in our analysis. Finally, we apply our method to a galaxy sample constructed from DES Y1 data specifically for LSS studies. This catalogue comprises galaxies within an effective area of 1318 deg 2 and 0.6 < z < 1.0. We find that the DES Y1 data favour a model with BAO at the 2.6σ C.L. However, the goodness of fit is somewhat poor, with χ 2/(d.o.f.) = 1.49. We identify a possible cause showing that using a theoretical covariance matrix obtained from C ’s that aremore » better adjusted to data results in an improved value of χ 2/(dof) = 1.36 which is similar to the value obtained with the real-space analysis. Lastly, our results correspond to a distance measurement of D A(z eff = 0.81)/r d = 10.65 ± 0.49, consistent with the main DES BAO findings. This is a companion paper to the main DES BAO article showing the details of the harmonic space analysis.« less

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [1];  [4];  [5];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [8]; ORCiD logo [9];  [3];  [10];  [11];  [12];  [13];  [13];  [14];  [15] more »;  [16];  [17];  [13];  [18];  [6];  [19];  [20];  [8];  [21];  [22];  [23];  [24];  [25];  [13];  [17];  [13]; ORCiD logo [26];  [13];  [8];  [27];  [26];  [28];  [19];  [6];  [13];  [29];  [30]; ORCiD logo [31];  [32];  [33];  [33];  [27];  [17];  [34];  [35];  [13];  [13];  [36];  [37];  [38]; ORCiD logo [39];  [40];  [18];  [24];  [41];  [24];  [42];  [11]; ORCiD logo [43]; ORCiD logo [44];  [33];  [41]; ORCiD logo [7];  [13];  [11]; ORCiD logo [45] « less
  1. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  2. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
  3. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; ICTP South American Institute for Fundamental Research Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
  4. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
  5. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  6. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  7. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  8. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  9. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
  10. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  11. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  12. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
  13. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  14. Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St, Pasadena, CA 91101, USA
  15. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  16. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  17. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  18. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  19. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA
  20. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  21. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  22. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  23. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  24. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  25. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  26. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  27. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  28. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  29. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  30. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  31. Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany; Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
  32. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  33. National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA
  34. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  35. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  36. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  37. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  38. Department of Physics and Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo, ON N2L 2Y5, Canada
  39. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  40. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  41. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  42. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  43. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  44. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  45. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1531209
Alternate Identifier(s):
OSTI ID: 1527216
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 487; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; large-scale structure of Universe

Citation Formats

Camacho, H., Kokron, N., Andrade-Oliveira, F., Rosenfeld, R., Lima, M., Lacasa, F., Sobreira, F., da Costa, L. N., Avila, S., Chan, K. C., Crocce, M., Ross, A. J., Troja, A., García-Bellido, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Johnson, M. W. G., Johnson, M. D., Kent, S., Kirk, D., Krause, E., Kuehn, K., Kuropatkin, N., Lin, H., Marshall, J. L., Miquel, R., Percival, W. J., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Walker, A. R., and Zuntz, J. Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum. United States: N. p., 2019. Web. doi:10.1093/mnras/stz1514.
Camacho, H., Kokron, N., Andrade-Oliveira, F., Rosenfeld, R., Lima, M., Lacasa, F., Sobreira, F., da Costa, L. N., Avila, S., Chan, K. C., Crocce, M., Ross, A. J., Troja, A., García-Bellido, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Johnson, M. W. G., Johnson, M. D., Kent, S., Kirk, D., Krause, E., Kuehn, K., Kuropatkin, N., Lin, H., Marshall, J. L., Miquel, R., Percival, W. J., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Walker, A. R., & Zuntz, J. Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum. United States. doi:10.1093/mnras/stz1514.
Camacho, H., Kokron, N., Andrade-Oliveira, F., Rosenfeld, R., Lima, M., Lacasa, F., Sobreira, F., da Costa, L. N., Avila, S., Chan, K. C., Crocce, M., Ross, A. J., Troja, A., García-Bellido, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Johnson, M. W. G., Johnson, M. D., Kent, S., Kirk, D., Krause, E., Kuehn, K., Kuropatkin, N., Lin, H., Marshall, J. L., Miquel, R., Percival, W. J., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Walker, A. R., and Zuntz, J. Mon . "Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum". United States. doi:10.1093/mnras/stz1514.
@article{osti_1531209,
title = {Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum},
author = {Camacho, H. and Kokron, N. and Andrade-Oliveira, F. and Rosenfeld, R. and Lima, M. and Lacasa, F. and Sobreira, F. and da Costa, L. N. and Avila, S. and Chan, K. C. and Crocce, M. and Ross, A. J. and Troja, A. and García-Bellido, J. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Annis, J. and Bernstein, R. A. and Bertin, E. and Bridle, S. L. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Cawthon, R. and Cunha, C. E. and D’Andrea, C. B. and De Vicente, J. and Desai, S. and Diehl, H. T. and Doel, P. and Estrada, J. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and Gerdes, D. W. and Giannantonio, T. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hollowood, D. L. and Honscheid, K. and Hoyle, B. and James, D. J. and Johnson, M. W. G. and Johnson, M. D. and Kent, S. and Kirk, D. and Krause, E. and Kuehn, K. and Kuropatkin, N. and Lin, H. and Marshall, J. L. and Miquel, R. and Percival, W. J. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sanchez, E. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Tucker, D. L. and Walker, A. R. and Zuntz, J.},
abstractNote = {We use data from the first-year observations of the DES collaboration to measure the galaxy angular power spectrum (APS), and search for its BAO feature. We test our methodology in a sample of 1800 DES Y1-like mock catalogues. We use the pseudo-Cℓ method to estimate the APS and the mock catalogues to estimate its covariance matrix. We use templates to model the measured spectra and estimate template parameters firstly from the Cℓ’s of the mocks using two different methods, a maximum likelihood estimator and a Markov Chain Monte Carlo, finding consistent results with a good reduced χ2. Robustness tests are performed to estimate the impact of different choices of settings used in our analysis. Finally, we apply our method to a galaxy sample constructed from DES Y1 data specifically for LSS studies. This catalogue comprises galaxies within an effective area of 1318 deg2 and 0.6 < z < 1.0. We find that the DES Y1 data favour a model with BAO at the 2.6σ C.L. However, the goodness of fit is somewhat poor, with χ2/(d.o.f.) = 1.49. We identify a possible cause showing that using a theoretical covariance matrix obtained from Cℓ’s that are better adjusted to data results in an improved value of χ2/(dof) = 1.36 which is similar to the value obtained with the real-space analysis. Lastly, our results correspond to a distance measurement of DA(zeff = 0.81)/rd = 10.65 ± 0.49, consistent with the main DES BAO findings. This is a companion paper to the main DES BAO article showing the details of the harmonic space analysis.},
doi = {10.1093/mnras/stz1514},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 487,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 3, 2020
Publisher's Version of Record

Save / Share: