DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Application of an Evolutionary Programming Process to a Simulation of the ETEX Large-Scale Airborne Dispersion Experiment

Abstract

Abstract Airborne tracer simulations are typically performed using a dispersion model driven by a high-resolution meteorological model. Besides solving the dynamic equations of momentum, heat, and moisture on the resolved model grid, mesoscale models must account for subgrid-scale fluxes and other unresolved processes. These are estimated through parameterization schemes of eddy diffusion, convection, and surface interactions, and they make use of prescribed parameters set by the user. Such “free” model parameters are often poorly constrained, and a range of plausible values exists for each. Evolutionary programming (EP) is a process to improve the selection of the parameters. A population of simulations is first run with a different set of parameter values for each member, and the member judged most accurate is selected as the “parent” of a new “generation.” After a number of iterations, the simulations should approach a configuration that is best adapted to the atmospheric conditions. We apply the EP process to simulate the first release of the 1994 European Tracer Experiment (ETEX) project, which comprised two experiments in which a tracer was released in western France and sampled by an observing network. The EP process is used to improve a simulation of the RAMS mesoscale weather model,more » with weather data collected during ETEX being used to “score” the individual members according to how well each simulation matches the observations. The meteorological simulations from before and after application of the EP process are each used to force a dispersion model to create a simulation of the ETEX release, and substantial improvement is observed when these are validated against sampled tracer concentrations.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Savannah River National Laboratory, Aiken, South Carolina
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1498581
Alternate Identifier(s):
OSTI ID: 1529487
Report Number(s):
SRNS-STI-2018-00164
Journal ID: ISSN 1558-8424
Grant/Contract Number:  
AC09-08SR22470
Resource Type:
Published Article
Journal Name:
Journal of Applied Meteorology and Climatology
Additional Journal Information:
Journal Name: Journal of Applied Meteorology and Climatology Journal Volume: 58 Journal Issue: 3; Journal ID: ISSN 1558-8424
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Dispersion; Adaptive models; Mesoscale models

Citation Formats

Werth, David, Maze, Grace, Buckley, Robert, and Chiswell, Steven. The Application of an Evolutionary Programming Process to a Simulation of the ETEX Large-Scale Airborne Dispersion Experiment. United States: N. p., 2019. Web. doi:10.1175/JAMC-D-18-0098.1.
Werth, David, Maze, Grace, Buckley, Robert, & Chiswell, Steven. The Application of an Evolutionary Programming Process to a Simulation of the ETEX Large-Scale Airborne Dispersion Experiment. United States. https://doi.org/10.1175/JAMC-D-18-0098.1
Werth, David, Maze, Grace, Buckley, Robert, and Chiswell, Steven. Thu . "The Application of an Evolutionary Programming Process to a Simulation of the ETEX Large-Scale Airborne Dispersion Experiment". United States. https://doi.org/10.1175/JAMC-D-18-0098.1.
@article{osti_1498581,
title = {The Application of an Evolutionary Programming Process to a Simulation of the ETEX Large-Scale Airborne Dispersion Experiment},
author = {Werth, David and Maze, Grace and Buckley, Robert and Chiswell, Steven},
abstractNote = {Abstract Airborne tracer simulations are typically performed using a dispersion model driven by a high-resolution meteorological model. Besides solving the dynamic equations of momentum, heat, and moisture on the resolved model grid, mesoscale models must account for subgrid-scale fluxes and other unresolved processes. These are estimated through parameterization schemes of eddy diffusion, convection, and surface interactions, and they make use of prescribed parameters set by the user. Such “free” model parameters are often poorly constrained, and a range of plausible values exists for each. Evolutionary programming (EP) is a process to improve the selection of the parameters. A population of simulations is first run with a different set of parameter values for each member, and the member judged most accurate is selected as the “parent” of a new “generation.” After a number of iterations, the simulations should approach a configuration that is best adapted to the atmospheric conditions. We apply the EP process to simulate the first release of the 1994 European Tracer Experiment (ETEX) project, which comprised two experiments in which a tracer was released in western France and sampled by an observing network. The EP process is used to improve a simulation of the RAMS mesoscale weather model, with weather data collected during ETEX being used to “score” the individual members according to how well each simulation matches the observations. The meteorological simulations from before and after application of the EP process are each used to force a dispersion model to create a simulation of the ETEX release, and substantial improvement is observed when these are validated against sampled tracer concentrations.},
doi = {10.1175/JAMC-D-18-0098.1},
journal = {Journal of Applied Meteorology and Climatology},
number = 3,
volume = 58,
place = {United States},
year = {Thu Mar 07 00:00:00 EST 2019},
month = {Thu Mar 07 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1175/JAMC-D-18-0098.1

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share: