DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fe( ii ) and Fe( iii ) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach

Abstract

Nanoparticulate iron sulfides have many possible applications and are also proposed to be prebiotic catalysts for the reduction of CO2 to biologically important molecules, thus the development of reliable routes to specific phases with controlled sizes and morphologies is important. In this work we focus on the use of iron dithiocarbamate complexes as single source precursors (SSPs) to generate greigite and pyrrhotite nanoparticles. Since these minerals contain both iron(III) and iron(II) centres, SSPs in both oxidation states, [Fe(S2CNR2)3] and cis-[Fe(CO)2(S2CNR2)2] respectively, have been utilised. Use of this Fe(II) precursor is novel and it readily loses both carbonyls in a single step (as shown by TGA measurements) providing an in situ source of the extremely air-sensitive Fe(II) dithiocarbamate complexes [Fe(S2CNR2)2]. Decomposition of [Fe(S2CNR2)3] alone in oleylamine affords primarily pyrrhotite, although by careful control of reaction conditions (ca. 230 °C, 40–50 nM SSP) a window exists in which pure greigite nanoparticles can be isolated. With cis-[Fe(CO)2(S2CNR2)2] we were unable to produce pure greigite, with pyrrhotite formation dominating, a similar situation being found with mixtures of Fe(II) and Fe(III) precursors. In situ X-ray absorption spectroscopy (XAS) studies showed that heating [Fe(S2CNiBu2)3] in oleylamine resulted in amine coordination and, at ca. 60 °C, reductionmore » of Fe(III) to Fe(II) with (proposed) elimination of thiuram disulfide (S2CNR2)2. We thus carried out a series of decomposition studies with added thiuram disulfide (R = iBu) and found that addition of 1–2 equivalents led to the formation of pure greigite nanoparticles between 230 and 280 °C with low SSP concentrations. Average particle size does not vary significantly with increasing concentration, thus providing a convenient route to ca. 40 nm greigite nanoparticles. In situ XAS studies have been carried out and allow a decomposition pathway for [Fe(S2CNiBu2)3] in oleylamine to be established; reduction of Fe(III) to Fe(II) reduction triggers substitution of the secondary amide backbone by oleylamine (RNH2) resulting in the in situ formation of a primary dithiocarbamate derivative [Fe(RNH2)2(S2CNHR)2]. This in turn extrudes RNCS to afford molecular precursors of the observed FeS nanomaterials. The precise role of thiuram disulfide in the decomposition process is unknown, but it likely plays a part in controlling the Fe(III)–Fe(II) equilibrium and may also act as a source of sulfur allowing control over the Fe:S ratio in the mineral products.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [2]; ORCiD logo [5]; ORCiD logo [6]
  1. Department of Chemistry; King's College London; London SE1 1DB; UK; Department of Chemistry
  2. Department of Chemistry; University College London; London WC1H OAJ; UK
  3. Department of Chemistry; University College London; London WC1H OAJ; UK; Netherlands Organisation for Scientific Research DUBBLE@ESRF
  4. Netherlands Organisation for Scientific Research DUBBLE@ESRF; 38043 Grenoble; France; Chemistry Division; Oak Ridge National Laboratory
  5. School of Chemistry; Cardiff University; Cardiff; UK
  6. Department of Chemistry; King's College London; London SE1 1DB; UK
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; Netherlands Organisation for Scientific Research (NWO)
OSTI Identifier:
1527056
Alternate Identifier(s):
OSTI ID: 1558538
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Nanoscale Advances
Additional Journal Information:
Journal Name: Nanoscale Advances Journal Volume: 1 Journal Issue: 8; Journal ID: ISSN 2516-0230
Publisher:
Royal Society of Chemistry
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Roffey, Anna, Hollingsworth, Nathan, Islam, Husn-Ubayda, Bras, Wim, Sankar, Gopinathan, de Leeuw, Nora H., and Hogarth, Graeme. Fe( ii ) and Fe( iii ) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach. United Kingdom: N. p., 2019. Web. doi:10.1039/C9NA00262F.
Roffey, Anna, Hollingsworth, Nathan, Islam, Husn-Ubayda, Bras, Wim, Sankar, Gopinathan, de Leeuw, Nora H., & Hogarth, Graeme. Fe( ii ) and Fe( iii ) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach. United Kingdom. https://doi.org/10.1039/C9NA00262F
Roffey, Anna, Hollingsworth, Nathan, Islam, Husn-Ubayda, Bras, Wim, Sankar, Gopinathan, de Leeuw, Nora H., and Hogarth, Graeme. Tue . "Fe( ii ) and Fe( iii ) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach". United Kingdom. https://doi.org/10.1039/C9NA00262F.
@article{osti_1527056,
title = {Fe( ii ) and Fe( iii ) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach},
author = {Roffey, Anna and Hollingsworth, Nathan and Islam, Husn-Ubayda and Bras, Wim and Sankar, Gopinathan and de Leeuw, Nora H. and Hogarth, Graeme},
abstractNote = {Nanoparticulate iron sulfides have many possible applications and are also proposed to be prebiotic catalysts for the reduction of CO2 to biologically important molecules, thus the development of reliable routes to specific phases with controlled sizes and morphologies is important. In this work we focus on the use of iron dithiocarbamate complexes as single source precursors (SSPs) to generate greigite and pyrrhotite nanoparticles. Since these minerals contain both iron(III) and iron(II) centres, SSPs in both oxidation states, [Fe(S2CNR2)3] and cis-[Fe(CO)2(S2CNR2)2] respectively, have been utilised. Use of this Fe(II) precursor is novel and it readily loses both carbonyls in a single step (as shown by TGA measurements) providing an in situ source of the extremely air-sensitive Fe(II) dithiocarbamate complexes [Fe(S2CNR2)2]. Decomposition of [Fe(S2CNR2)3] alone in oleylamine affords primarily pyrrhotite, although by careful control of reaction conditions (ca. 230 °C, 40–50 nM SSP) a window exists in which pure greigite nanoparticles can be isolated. With cis-[Fe(CO)2(S2CNR2)2] we were unable to produce pure greigite, with pyrrhotite formation dominating, a similar situation being found with mixtures of Fe(II) and Fe(III) precursors. In situ X-ray absorption spectroscopy (XAS) studies showed that heating [Fe(S2CNiBu2)3] in oleylamine resulted in amine coordination and, at ca. 60 °C, reduction of Fe(III) to Fe(II) with (proposed) elimination of thiuram disulfide (S2CNR2)2. We thus carried out a series of decomposition studies with added thiuram disulfide (R = iBu) and found that addition of 1–2 equivalents led to the formation of pure greigite nanoparticles between 230 and 280 °C with low SSP concentrations. Average particle size does not vary significantly with increasing concentration, thus providing a convenient route to ca. 40 nm greigite nanoparticles. In situ XAS studies have been carried out and allow a decomposition pathway for [Fe(S2CNiBu2)3] in oleylamine to be established; reduction of Fe(III) to Fe(II) reduction triggers substitution of the secondary amide backbone by oleylamine (RNH2) resulting in the in situ formation of a primary dithiocarbamate derivative [Fe(RNH2)2(S2CNHR)2]. This in turn extrudes RNCS to afford molecular precursors of the observed FeS nanomaterials. The precise role of thiuram disulfide in the decomposition process is unknown, but it likely plays a part in controlling the Fe(III)–Fe(II) equilibrium and may also act as a source of sulfur allowing control over the Fe:S ratio in the mineral products.},
doi = {10.1039/C9NA00262F},
journal = {Nanoscale Advances},
number = 8,
volume = 1,
place = {United Kingdom},
year = {Tue Jan 01 00:00:00 EST 2019},
month = {Tue Jan 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C9NA00262F

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Synthesis and crystal structure of [Ru8(μ5-S)2(μ4-S)(μ3-S)(μ-CNMe2)2(μ-CO)(CO)15] formed via the double sulphur–carbon bond cleavage of dithiocarbamate ligands
journal, August 2007


The rocky roots of the acetyl-CoA pathway
journal, July 2004


On the antiquity of metalloenzymes and their substrates in bioenergetics
journal, August 2013

  • Nitschke, Wolfgang; McGlynn, Shawn E.; Milner-White, E. James
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.02.008

Colloidal Iron Pyrite (FeS 2 ) Nanocrystal Inks for Thin-Film Photovoltaics
journal, February 2011

  • Puthussery, James; Seefeld, Sean; Berry, Nicholas
  • Journal of the American Chemical Society, Vol. 133, Issue 4
  • DOI: 10.1021/ja1096368

Dynamic stereochemistry of tris(chelate) complexes. I. Tris(dithiocarbamato) complexes of iron, cobalt, and rhodium
journal, July 1973

  • Palazzotto, M. C.; Duffy, D. J.; Edgar, B. L.
  • Journal of the American Chemical Society, Vol. 95, Issue 14
  • DOI: 10.1021/ja00795a013

(Diorganodithiocarbamato)iron complexes. Effect of organic substituents
journal, December 1977

  • Zimmerman, Julia B.; Starinshak, Thomas W.; Uhrich, David L.
  • Inorganic Chemistry, Vol. 16, Issue 12
  • DOI: 10.1021/ic50178a024

Crystal and molecular structure of iron(II) bis(diethyldithiocarbamate)
journal, December 1975

  • Ileperuma, Oliver A.; Feltham, Robert D.
  • Inorganic Chemistry, Vol. 14, Issue 12
  • DOI: 10.1021/ic50154a037

Catalytic functions of cubane-type M4S4 clusters
journal, January 2011

  • Seino, Hidetake; Hidai, Masanobu
  • Chemical Science, Vol. 2, Issue 5
  • DOI: 10.1039/c0sc00545b

Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications
journal, July 2013

  • Ramasamy, Karthik; Malik, Mohammad Azad; Revaprasadu, Neerish
  • Chemistry of Materials, Vol. 25, Issue 18
  • DOI: 10.1021/cm401366q

Transition Metal Polysulfide Complexes as Single-Source Precursors for Metal Sulfide Nanocrystals
journal, February 2010

  • Beal, John H. L.; Etchegoin, Pablo G.; Tilley, Richard D.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 9
  • DOI: 10.1021/jp910354q

A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals
journal, October 2012

  • Zhang, Haitao; Hyun, Byung-Ryool; Wise, Frank W.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303207s

Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments
journal, October 2008

  • Nikitenko, Sergey; Beale, Andrew M.; van der Eerden, Ad M. J.
  • Journal of Synchrotron Radiation, Vol. 15, Issue 6
  • DOI: 10.1107/S0909049508023327

Reactions of trans-[RuCl2(CO)2(PEt3)2] with 1,1-dithiolates: Stepwise formation of cis-[Ru(CO)(PEt3)(S2X)] (X=CNMe2, CNEt2, COEt, P(OEt)2, PPh2)
journal, January 2006


The preparation and phase transition of nanocrystalline iron sulfides via toluene-thermal process
journal, October 1999


Phase Control in the Synthesis of Magnetic Iron Sulfide Nanocrystals From a Cubane-Type Fe−S Cluster
journal, December 2008

  • Vanitha, P. V.; O’Brien, Paul
  • Journal of the American Chemical Society, Vol. 130, Issue 51
  • DOI: 10.1021/ja8078187

Isocyano and phosphine complexes derived by ligand displacement from nickel(IV), cobalt(IV) and iron(IV) tris(dithiocarbamates)
journal, January 1975


One-step synthesis of cubic FeS 2 and flower-like FeSe 2 particles by a solvothermal reduction process
journal, January 2012

  • Yuan, Binxia; Luan, Weiling; Tu, Shan-tung
  • Dalton Trans., Vol. 41, Issue 3
  • DOI: 10.1039/C1DT11176K

Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment
journal, April 1996

  • Heinen, Wolfgang; Lauwers, Anne Marie
  • Origins of Life and Evolution of the Biosphere, Vol. 26, Issue 2
  • DOI: 10.1007/BF01809852

Chemistry of Iron Sulfides
journal, February 2007

  • Rickard, David; Luther, George W.
  • Chemical Reviews, Vol. 107, Issue 2
  • DOI: 10.1021/cr0503658

Synthetic routes to iron chalcogenide nanoparticles and thin films
journal, January 2016

  • Matthews, Peter D.; Akhtar, Masood; Malik, M. Azad
  • Dalton Transactions, Vol. 45, Issue 47
  • DOI: 10.1039/C6DT03486A

Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application
journal, November 2011

  • Bi, Yu; Yuan, Yongbo; Exstrom, Christopher L.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202902z

A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life
journal, September 1994

  • Russell, Michael J.; Daniel, Roy M.; Hall, Allan J.
  • Journal of Molecular Evolution, Vol. 39, Issue 3
  • DOI: 10.1007/BF00160147

Photochemical and enzymatic synthesis of formic acid from CO2 with chlorophyll and dehydrogenase system
journal, March 2006


The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front
journal, May 1997


Sulfur chelates II. Five coordinate transition metal complexes
journal, September 1966


Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water
journal, December 2013

  • Di Giovanni, Carlo; Wang, Wei-An; Nowak, Sophie
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs4011698

Carbon Monoxide Induced Decomposition of the Active Site [Ni−4Fe−5S] Cluster of CO Dehydrogenase
journal, May 2004

  • Dobbek, Holger; Svetlitchnyi, Vitali; Liss, Jago
  • Journal of the American Chemical Society, Vol. 126, Issue 17
  • DOI: 10.1021/ja037776v

The synthesis of iron sulfide nanocrystals from tris(O-alkylxanthato)iron(iii) complexes
journal, January 2013

  • Akhtar, Masood; Malik, Mohammad Azad; Tuna, Floriana
  • Journal of Materials Chemistry A, Vol. 1, Issue 31
  • DOI: 10.1039/c3ta12178j

Controlled growth of pyrite FeS 2 crystallites by a facile surfactant-assisted solvothermal method
journal, January 2010

  • Wang, De-Wei; Wang, Qi-Hua; Wang, Ting-Mei
  • CrystEngComm, Vol. 12, Issue 3
  • DOI: 10.1039/B917941K

Synthesis and Cathodoluminescence of CdS Nanowires
journal, June 2011


On the Chemistry and Evolution of the Pioneer Organism
journal, April 2007


Synthesis of FeS and FeSe Nanoparticles from a Single Source Precursor: A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, and Electrochemical Sensing of H 2 O 2
journal, April 2012

  • Dutta, Amit Kumar; Maji, Swarup Kumar; Srivastava, Divesh N.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 4
  • DOI: 10.1021/am300408r

On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells
journal, January 2003

  • Martin, William; Russell, Michael J.
  • Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 358, Issue 1429
  • DOI: 10.1098/rstb.2002.1183

Deposition of iron sulfide nanocrystals from single source precursors
journal, January 2011

  • Akhtar, Masood; Akhter, Javeed; Malik, M. Azad
  • Journal of Materials Chemistry, Vol. 21, Issue 26
  • DOI: 10.1039/c1jm10703h

Kinetics investigation of carbon-nitrogen bond rotation in dithiocarbamato complexes of iron by proton magnetic resonance
journal, February 1973

  • Edgar, B. L.; Duffy, D. J.; Palazzotto, M. C.
  • Journal of the American Chemical Society, Vol. 95, Issue 4
  • DOI: 10.1021/ja00785a021

Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences
journal, February 2008

  • Jun, Young-wook; Seo, Jung-wook; Cheon, Jinwoo
  • Accounts of Chemical Research, Vol. 41, Issue 2
  • DOI: 10.1021/ar700121f

Synthesis and stereochemical rearrangements of complexes containing the Fe-S6 core
journal, January 1971

  • Holm, Richard H.; Pinolet, Louis H.; Lewis, Raymond Alwyn
  • Journal of the American Chemical Society, Vol. 93, Issue 2
  • DOI: 10.1021/ja00731a011

A Convenient Method for Determination of Tetramethylthiuram Disulphide.
journal, January 1962


The anomalous paramagnetism of iron(III) NN-dialkyldithiocarbamates
journal, January 1964

  • White, Ah; Roper, R.; Kokot, E.
  • Australian Journal of Chemistry, Vol. 17, Issue 3
  • DOI: 10.1071/CH9640294

Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach
journal, January 2010

  • Zhang, Yejun; Du, Yaping; Xu, Huarui
  • CrystEngComm, Vol. 12, Issue 11
  • DOI: 10.1039/c002824j

The Structure of synthetic Fe3S4 and the Nature of Transition to FeS
journal, March 1967


Reactions of iron carbonyl complexes with dimethylthiocarbamoyl chloride
journal, August 1977


Iron Pyrite Nanocubes: Size and Shape Considerations for Photovoltaic Application
journal, September 2012

  • Macpherson, H. Alex; Stoldt, Conrad R.
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn3029502

The Origin of Membrane Bioenergetics
journal, December 2012


Disubstituierte Dithiocarbamate („Carbate”) als Fällungsreagenzien für Metalle
journal, July 1950


Reaction of iron(III) trisxanthates and trisdithiophosphinates with pyridine
journal, July 1974

  • Saleh, Ramzi Y.; Straub, Darel K.
  • Inorganic Chemistry, Vol. 13, Issue 7
  • DOI: 10.1021/ic50137a003

Investigations on Iron Sulfide Nanosheets Prepared via a Single-Source Precursor Approach
journal, March 2008

  • Han, Wei; Gao, Mingyuan
  • Crystal Growth & Design, Vol. 8, Issue 3
  • DOI: 10.1021/cg701075u

In Situ XAS of the Solvothermal Decomposition of Dithiocarbamate Complexes
journal, April 2013


Crystal Structure of a Carbon Monoxide Dehydrogenase Reveals a [Ni-4Fe-5S] Cluster
journal, August 2001


Controlled colloidal synthesis of iron pyrite FeS 2 nanorods and quasi-cubic nanocrystal agglomerates
journal, January 2014

  • Zhu, Leize; Richardson, Beau J.; Yu, Qiuming
  • Nanoscale, Vol. 6, Issue 2
  • DOI: 10.1039/C3NR04979E

Nickel and Iron Sulfide Nanoparticles from Thiobiurets
journal, November 2011

  • Abdelhady, Ahmed Lutfi; Malik, Mohammad A.; O’Brien, Paul
  • The Journal of Physical Chemistry C, Vol. 116, Issue 3
  • DOI: 10.1021/jp2078659

Clostridium carboxidivorans Strain P7T Recombinant Formate Dehydrogenase Catalyzes Reduction of CO 2 to Formate
journal, November 2012

  • Alissandratos, Apostolos; Kim, Hye-Kyung; Matthews, Hayden
  • Applied and Environmental Microbiology, Vol. 79, Issue 2
  • DOI: 10.1128/AEM.02886-12

Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors
journal, January 2016

  • Roffey, Anna; Hollingsworth, Nathan; Islam, Husn-Ubayda
  • Nanoscale, Vol. 8, Issue 21
  • DOI: 10.1039/C6NR00053C

Electrochemical Reduction of Carbon Dioxide on Pyrite as a Pathway for Abiogenic Formation of Organic Molecules
journal, August 2004


Solution-Processable Pyrite FeS2 Nanocrystals for the Fabrication of Heterojunction Photodiodes with Visible to NIR Photodetection
journal, June 2012

  • Wang, Di-Yan; Jiang, You-Ting; Lin, Chih-Cheng
  • Advanced Materials, Vol. 24, Issue 25
  • DOI: 10.1002/adma.201200753

Dimethyl- and Diethyldithiocarbamate Complexes of Some Metal Carbonyl Compounds
journal, October 1964

  • Cotton, F. A.; McCleverty, J. A.
  • Inorganic Chemistry, Vol. 3, Issue 10
  • DOI: 10.1021/ic50020a012

Syntheses, X-ray structures, and reactions of ruthenium carbonyl complexes containing 1,1-dithiolates
journal, May 2002


Efficient Activation of the Greenhouse Gas CO2
journal, April 2011

  • Apfel, Ulf-Peter; Weigand, Wolfgang
  • Angewandte Chemie International Edition, Vol. 50, Issue 19
  • DOI: 10.1002/anie.201007163

Finite-size effect on magnetic properties in iron sulfide nanowire arrays
journal, April 2008


Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly
journal, January 2011

  • Li, Wei; Döblinger, Markus; Vaneski, Aleksandar
  • Journal of Materials Chemistry, Vol. 21, Issue 44
  • DOI: 10.1039/c1jm13336e

Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia
journal, November 2011

  • Chang, Yo-Sheng; Savitha, S.; Sadhasivam, S.
  • Journal of Colloid and Interface Science, Vol. 363, Issue 1
  • DOI: 10.1016/j.jcis.2010.06.069

Bio-inspired CO 2 conversion by iron sulfide catalysts under sustainable conditions
journal, January 2015

  • Roldan, A.; Hollingsworth, N.; Roffey, A.
  • Chemical Communications, Vol. 51, Issue 35
  • DOI: 10.1039/C5CC02078F

Synthesis and characterisation of magnetic iron sulfide nanocrystals
journal, May 2012

  • Beal, John H. L.; Etchegoin, Pablo G.; Tilley, Richard D.
  • Journal of Solid State Chemistry, Vol. 189
  • DOI: 10.1016/j.jssc.2012.01.015

Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
journal, July 2008

  • Reda, T.; Plugge, C. M.; Abram, N. J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 31, p. 10654-10658
  • DOI: 10.1073/pnas.0801290105

Synthesis and Comparison of the Magnetic Properties of Iron Sulfide Spinel and Iron Oxide Spinel Nanocrystals
journal, May 2011

  • Beal, John H. L.; Prabakar, Sujay; Gaston, Nicola
  • Chemistry of Materials, Vol. 23, Issue 10
  • DOI: 10.1021/cm2002868

Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications
journal, October 2013

  • Feng, Mei; Lu, Yang; Yang, Yuan
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02994

The reactivity of metal species towards thiuram sulfides: an alternative route to the syntheses of metal dithiocarbamates
journal, January 2000


Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles
journal, October 2014

  • Hollingsworth, Nathan; Roffey, Anna; Islam, Husn-Ubayda
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm503174z