DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the anharmonic vibrational structure of the carbon dioxide dimer

Abstract

Understanding the vibrational structure of the CO2 system is important to confirm the potential energy surface and interactions in such van der Waals complexes. In this work, we use our previously developed mbCO2 potential function to explore the vibrational structure of the CO2 monomer and dimer. The potential function has been trained to reproduce the potential energies at the CCSD(T)-F12b/aug-cc-pVTZ level of electronic structure theory. The harmonic approximation, as well as anharmonic corrections using vibrational structure theories such as vibrational self-consistent field, vibrational second-order Moller-Plesset perturbation, and vibrational configuration interaction (VCI), is applied to address the vibrational motions. We compare the vibrational results using the mbCO2 potential function with traditional electronic structure theory results and to experimental frequencies. The anharmonic results for the monomer most closely match the experimental data to within 3 cm-1, including the Fermi dyad frequencies. The intermolecular and intramolecular dimer frequencies were treated separately and show good agreement with the most recent theoretical and experimental results from the literature. The VCI treatment of the dimer vibrational motions accounts for vibrational mixing and delocalization, such that we observe the dimer Fermi resonance phenomena, both in the intramolecular and intermolecular regions.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Univ. of Tampa, FL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Tampa, FL (United States); California State Univ. (CalState), Los Angeles, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1518476
Alternate Identifier(s):
OSTI ID: 1505673
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 14; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Maystrovsky, Samuel, Keçeli, Murat, and Sode, Olaseni. Understanding the anharmonic vibrational structure of the carbon dioxide dimer. United States: N. p., 2019. Web. doi:10.1063/1.5089460.
Maystrovsky, Samuel, Keçeli, Murat, & Sode, Olaseni. Understanding the anharmonic vibrational structure of the carbon dioxide dimer. United States. https://doi.org/10.1063/1.5089460
Maystrovsky, Samuel, Keçeli, Murat, and Sode, Olaseni. Mon . "Understanding the anharmonic vibrational structure of the carbon dioxide dimer". United States. https://doi.org/10.1063/1.5089460. https://www.osti.gov/servlets/purl/1518476.
@article{osti_1518476,
title = {Understanding the anharmonic vibrational structure of the carbon dioxide dimer},
author = {Maystrovsky, Samuel and Keçeli, Murat and Sode, Olaseni},
abstractNote = {Understanding the vibrational structure of the CO2 system is important to confirm the potential energy surface and interactions in such van der Waals complexes. In this work, we use our previously developed mbCO2 potential function to explore the vibrational structure of the CO2 monomer and dimer. The potential function has been trained to reproduce the potential energies at the CCSD(T)-F12b/aug-cc-pVTZ level of electronic structure theory. The harmonic approximation, as well as anharmonic corrections using vibrational structure theories such as vibrational self-consistent field, vibrational second-order Moller-Plesset perturbation, and vibrational configuration interaction (VCI), is applied to address the vibrational motions. We compare the vibrational results using the mbCO2 potential function with traditional electronic structure theory results and to experimental frequencies. The anharmonic results for the monomer most closely match the experimental data to within 3 cm-1, including the Fermi dyad frequencies. The intermolecular and intramolecular dimer frequencies were treated separately and show good agreement with the most recent theoretical and experimental results from the literature. The VCI treatment of the dimer vibrational motions accounts for vibrational mixing and delocalization, such that we observe the dimer Fermi resonance phenomena, both in the intramolecular and intermolecular regions.},
doi = {10.1063/1.5089460},
journal = {Journal of Chemical Physics},
number = 14,
volume = 150,
place = {United States},
year = {Mon Apr 08 00:00:00 EDT 2019},
month = {Mon Apr 08 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interaction site models for carbon dioxide
journal, September 1981


A semiclassical self-consistent field (SC SCF) approximation for eigenvalues of coupled-vibration systems
journal, December 1979


Configuration selection as a route towards efficient vibrational configuration interaction calculations
journal, November 2007

  • Rauhut, Guntram
  • The Journal of Chemical Physics, Vol. 127, Issue 18
  • DOI: 10.1063/1.2790016

Tuning of the Fermi resonance of CO 2 and CS 2 by temperature, pressure, and matrix material
journal, April 1987

  • Bier, K. D.; Jodl, H. J.
  • The Journal of Chemical Physics, Vol. 86, Issue 8
  • DOI: 10.1063/1.452711

Explicit correlation treatment of the potential energy surface of CO 2 dimer
journal, June 2014

  • Kalugina, Yulia N.; Buryak, Ilya A.; Ajili, Yosra
  • The Journal of Chemical Physics, Vol. 140, Issue 23
  • DOI: 10.1063/1.4882900

Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6
journal, January 2008

  • Yagi, Kiyoshi; Hirata, So; Hirao, Kimihiko
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 13
  • DOI: 10.1039/b719093j

On the representation of many-body interactions in water
journal, September 2015

  • Medders, Gregory R.; Götz, Andreas W.; Morales, Miguel A.
  • The Journal of Chemical Physics, Vol. 143, Issue 10
  • DOI: 10.1063/1.4930194

Intramolecular vibrational frequencies of water clusters (H2O)n (n=2–5): Anharmonic analyses using potential functions based on the scaled hypersphere search method
journal, August 2008

  • Watanabe, Yu; Maeda, Satoshi; Ohno, Koichi
  • The Journal of Chemical Physics, Vol. 129, Issue 7
  • DOI: 10.1063/1.2973605

Accurate ab initio quartic force fields for the N2O and CO2 molecules
journal, April 1993


Mo/ller–Plesset perturbation theory applied to vibrational problems
journal, December 1996

  • Norris, Lawrence S.; Ratner, Mark A.; Roitberg, Adrian E.
  • The Journal of Chemical Physics, Vol. 105, Issue 24
  • DOI: 10.1063/1.472922

Optimized coordinates for anharmonic vibrational structure theories
journal, November 2012

  • Yagi, Kiyoshi; Keçeli, Murat; Hirata, So
  • The Journal of Chemical Physics, Vol. 137, Issue 20
  • DOI: 10.1063/1.4767776

Raman intensities of Fermi diads. I. Overtones in resonance with nondegenerate fundamentals
journal, November 1983

  • Montero, S.
  • The Journal of Chemical Physics, Vol. 79, Issue 9
  • DOI: 10.1063/1.446357

Development of a “First Principles” Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient
journal, November 2013

  • Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400863t

Rotational structure in the infrared spectra of carbon dioxide and nitrous oxide dimers
journal, March 1984


Variational vibrational calculations using high-order anharmonic force fields
journal, December 2004

  • Czakó, Gábor; Furtenbacher, Tibor; Császár *, Attila G.
  • Molecular Physics, Vol. 102, Issue 23-24
  • DOI: 10.1080/0026897042000274991

Ab initio vibrational state calculations with a quartic force field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6
journal, July 2004

  • Yagi, Kiyoshi; Hirao, Kimihiko; Taketsugu, Tetsuya
  • The Journal of Chemical Physics, Vol. 121, Issue 3
  • DOI: 10.1063/1.1764501

Fermi resonance in CO2: A combined electronic coupled-cluster and vibrational configuration-interaction prediction
journal, March 2007

  • Rodriguez-Garcia, Valerie; Hirata, So; Yagi, Kiyoshi
  • The Journal of Chemical Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.2710256

Iterative active-space selection for vibrational configuration interaction calculations using a reduced-coupling VSCF basis
journal, June 2008


Ab initio calculation of the intermolecular potential energy surface of (CO2)2 and first applications in simulations of fluid CO2
journal, December 1996


Vibrational predissociation in the CO 2 dimer and trimer and rare gas–CO 2 complexes
journal, July 1988

  • Pine, A. S.; Fraser, G. T.
  • The Journal of Chemical Physics, Vol. 89, Issue 1
  • DOI: 10.1063/1.455512

Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer
journal, January 2003

  • Schofield, Daniel P.; Kjaergaard, Henrik G.
  • Physical Chemistry Chemical Physics, Vol. 5, Issue 15
  • DOI: 10.1039/b304952c

Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory
journal, February 1999

  • Bukowski, Robert; Sadlej, Joanna; Jeziorski, Bogumił
  • The Journal of Chemical Physics, Vol. 110, Issue 8
  • DOI: 10.1063/1.479108

Temperature Variations of the Interaction Induced Absorption of CO2 in the ν1, 2ν2 Region: FTIR Measurements and Dimer Contribution
journal, May 2002

  • Vigasin, A. A.; Baranov, Y. I.; Chlenova, G. V.
  • Journal of Molecular Spectroscopy, Vol. 213, Issue 1
  • DOI: 10.1006/jmsp.2002.8529

Vibrations of the carbon dioxide dimer
journal, March 2000

  • Chen, Hua; Light, J. C.
  • The Journal of Chemical Physics, Vol. 112, Issue 11
  • DOI: 10.1063/1.481061

Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting via Monomial Symmetrization
journal, November 2009

  • Xie, Zhen; Bowman, Joel M.
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 1
  • DOI: 10.1021/ct9004917

Study of the Fermi doublet ν1 — 2ν2 in the Raman spectra of CO2 in different phases
journal, January 1983


Development of a “First Principles” Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters
journal, March 2014

  • Babin, Volodymyr; Medders, Gregory R.; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 4
  • DOI: 10.1021/ct500079y

Development of a Flexible-Monomer Two-Body Carbon Dioxide Potential and Its Application to Clusters up to (CO 2 ) 13
journal, October 2017

  • Sode, Olaseni; Cherry, Jasmine N.
  • Journal of Computational Chemistry, Vol. 38, Issue 32
  • DOI: 10.1002/jcc.25053

The carbon dioxide molecule
journal, June 1979


Symmetry-adapted direct product discrete variable representation for the coupled angular momentum operator: Application to the vibrations of (CO2)2
journal, August 2003

  • Lee, Hee-Seung; Chen, Hua; Light, John C.
  • The Journal of Chemical Physics, Vol. 119, Issue 8
  • DOI: 10.1063/1.1592511

Raman intensity measurements of the Fermi diad ν1, 2ν2 in 12CO2 and 13CO2
journal, February 1971


Five intermolecular vibrations of the CO 2 dimer observed via infrared combination bands
journal, November 2016

  • Norooz Oliaee, J.; Dehghany, M.; Rezaei, Mojtaba
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966146

Refinement of Nonbonding Interaction Parameters for Carbon Dioxide on the Basis of the Pair Potentials Obtained by MP2/6-311+G(2df)-Level ab Initio Molecular Orbital Calculations
journal, January 1996

  • Tsuzuki, Seiji; Uchimaru, Tadafumi; Tanabe, Kazutoshi
  • The Journal of Physical Chemistry, Vol. 100, Issue 11
  • DOI: 10.1021/jp952275k

HIGH RESOLUTION RAMAN SPECTROSCOPY OF GASES: XI. SPECTRA OF CS 2 AND CO 2
journal, February 1958

  • Stoicheff, B. P.
  • Canadian Journal of Physics, Vol. 36, Issue 2
  • DOI: 10.1139/p58-026

The Infrared Spectrum of Carbon Dioxide. Part I
journal, May 1933


Influence of Fermi resonance on the rotational constants of linear triatomic molecules
journal, January 1969


Simplification of the molecular vibration-rotation hamiltonian
journal, January 1968


Towards an ab initio flexible potential for water, and post-harmonic quantum vibrational analysis of water clusters
journal, May 2010


Higher analytic derivatives. II. The fourth derivative of self‐consistent‐field energy
journal, November 1991

  • Maslen, Paul E.; Jayatilaka, Dylan; Colwell, Susan M.
  • The Journal of Chemical Physics, Vol. 95, Issue 10
  • DOI: 10.1063/1.461367

Møller–Plesset perturbation theory for vibrational wave functions
journal, September 2003

  • Christiansen, Ove
  • The Journal of Chemical Physics, Vol. 119, Issue 12
  • DOI: 10.1063/1.1601593

Infrared spectroscopy of (12C18O2)2 and isotope effect on the vibrationally averaged structure of (CO2)2
journal, August 2004


The self-consistent-field approach to polyatomic vibrations
journal, June 1986


The cyclic CO2 trimer: Observation of a parallel band and determination of an intermolecular out-of-plane torsional frequency
journal, February 2008

  • Dehghany, M.; Afshari, Mahin; Moazzen-Ahmadi, N.
  • The Journal of Chemical Physics, Vol. 128, Issue 6
  • DOI: 10.1063/1.2834931

The Infrared Absorption Spectrum of Carbon Dioxide
journal, August 1932


The Infrared Spectrum of Carbon Dioxide. Part II
journal, July 1933


Molecular orbital anharmonic estimates for the infrared spectrum of CO2
journal, October 2002

  • Martins Filho, Harley P.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 58, Issue 12
  • DOI: 10.1016/s1386-1425(02)00006-9

Calculation of the O−H Stretching Vibrational Overtone Spectrum of the Water Dimer
journal, July 2008

  • Salmi, Teemu; Hänninen, Vesa; Garden, Anna L.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 28
  • DOI: 10.1021/jp800754y

Size-extensive vibrational self-consistent field method
journal, October 2011

  • Keçeli, Murat; Hirata, So
  • The Journal of Chemical Physics, Vol. 135, Issue 13
  • DOI: 10.1063/1.3644895

Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field
journal, August 1999

  • Chaban, Galina M.; Jung, Joon O.; Gerber, R. Benny
  • The Journal of Chemical Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.479452

Pulsed molecular beam infrared absorption spectroscopy of CO2 dimer
journal, December 1987


Excited vibrational states of polyatomic molecules: the semiclassical self-consistent field approach
journal, January 1986

  • Ratner, Mark A.; Gerber, R. B.
  • The Journal of Physical Chemistry, Vol. 90, Issue 1
  • DOI: 10.1021/j100273a008

The structure of the carbon dioxide dimer from near infrared spectroscopy
journal, April 1987

  • Jucks, K. W.; Huang, Z. S.; Dayton, D.
  • The Journal of Chemical Physics, Vol. 86, Issue 8
  • DOI: 10.1063/1.451895

MULTIMODE quantum calculations of intramolecular vibrational energies of the water dimer and trimer using ab initio -based potential energy surfaces
journal, February 2008

  • Wang, Yimin; Carter, Stuart; Braams, Bastiaan J.
  • The Journal of Chemical Physics, Vol. 128, Issue 7
  • DOI: 10.1063/1.2839303

Infrared and Raman studies of pressure effects on the vibrational modes of solid CO 2
journal, August 1981

  • Hanson, R. C.; Jones, L. H.
  • The Journal of Chemical Physics, Vol. 75, Issue 3
  • DOI: 10.1063/1.442183

MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules
journal, July 2003

  • Bowman, Joel M.; Carter, Stuart; Huang, Xinchuan
  • International Reviews in Physical Chemistry, Vol. 22, Issue 3
  • DOI: 10.1080/0144235031000124163

Computational study of the rovibrational spectrum of (CO2)2
journal, December 2016

  • Wang, Xiao-Gang; Carrington, Tucker; Dawes, Richard
  • Journal of Molecular Spectroscopy, Vol. 330
  • DOI: 10.1016/j.jms.2016.08.006

Collision-Induced Absorption by CO2in the Region of ν1, 2ν2
journal, February 1999

  • Baranov, Y. I.; Vigasin, A. A.
  • Journal of Molecular Spectroscopy, Vol. 193, Issue 2
  • DOI: 10.1006/jmsp.1998.7743

On Fermi resonance in carbon dioxide
journal, June 1965


Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions
journal, May 2016

  • Cisneros, Gerardo Andrés; Wikfeldt, Kjartan Thor; Ojamäe, Lars
  • Chemical Reviews, Vol. 116, Issue 13
  • DOI: 10.1021/acs.chemrev.5b00644

Development of a “First-Principles” Water Potential with Flexible Monomers. III. Liquid Phase Properties
journal, July 2014

  • Medders, Gregory R.; Babin, Volodymyr; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 8
  • DOI: 10.1021/ct5004115

Calculation of OH-stretching band intensities of the water dimer and trimer
journal, May 1999

  • Low, Geoffrey R.; Kjaergaard, Henrik G.
  • The Journal of Chemical Physics, Vol. 110, Issue 18
  • DOI: 10.1063/1.478832

Self‐consistent field energies and wavefunctions for coupled oscillators
journal, January 1978

  • Bowman, Joel M.
  • The Journal of Chemical Physics, Vol. 68, Issue 2
  • DOI: 10.1063/1.435782

Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions.
text, January 2016

  • Cisneros, Gerardo Andrés; Wikfeldt, Kjartan Thor; Ojamäe, Lars
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34300