DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Visualization of clustered protocadherin neuronal self-recognition complexes

Abstract

Neurite self-recognition and avoidance are fundamental properties of all nervous systems. These processes facilitate dendritic arborization, prevent formation of autapses and allow free interaction among non-self neurons. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, β- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities. Avoidance is observed between neurons that express identical protocadherin repertoires, and single-isoform differences are sufficient to prevent self-recognition. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers. Although these interactions have previously been characterized in isolation, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assembliesmore » pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Furthermore, our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains.« less

Authors:
 [1];  [2];  [3];  [1];  [2];  [2];  [3];  [4];  [4];  [2];  [5];  [5];  [2];  [2]
  1. Columbia Univ., New York, NY (United States); The National Resource for Automated Molecular Microscopy, New York, NY (United States)
  2. Columbia Univ., New York, NY (United States)
  3. The National Resource for Automated Molecular Microscopy, New York, NY (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. The National Resource for Automated Molecular Microscopy, New York, NY (United States); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH); NYSTAR: National Science Foundation; Simons Foundation; Agouron Inst.
OSTI Identifier:
1513013
Grant/Contract Number:  
P41GM103403; MCB-1412472; R01MH114817; F32GM128303; R01GM081871; SF349247; GM103310; OD019994; F00316
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 569; Journal Issue: 7755; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; Cryoelectron tomography; Molecular neuroscience; X-ray crystallography

Citation Formats

Brasch, Julia, Goodman, Kerry M., Noble, Alex J., Rapp, Micah, Mannepalli, Seetha, Bahna, Fabiana, Dandey, Venkata P., Bepler, Tristan, Berger, Bonnie, Maniatis, Tom, Potter, Clinton S., Carragher, Bridget, Honig, Barry, and Shapiro, Lawrence. Visualization of clustered protocadherin neuronal self-recognition complexes. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1089-3.
Brasch, Julia, Goodman, Kerry M., Noble, Alex J., Rapp, Micah, Mannepalli, Seetha, Bahna, Fabiana, Dandey, Venkata P., Bepler, Tristan, Berger, Bonnie, Maniatis, Tom, Potter, Clinton S., Carragher, Bridget, Honig, Barry, & Shapiro, Lawrence. Visualization of clustered protocadherin neuronal self-recognition complexes. United States. https://doi.org/10.1038/s41586-019-1089-3
Brasch, Julia, Goodman, Kerry M., Noble, Alex J., Rapp, Micah, Mannepalli, Seetha, Bahna, Fabiana, Dandey, Venkata P., Bepler, Tristan, Berger, Bonnie, Maniatis, Tom, Potter, Clinton S., Carragher, Bridget, Honig, Barry, and Shapiro, Lawrence. Wed . "Visualization of clustered protocadherin neuronal self-recognition complexes". United States. https://doi.org/10.1038/s41586-019-1089-3. https://www.osti.gov/servlets/purl/1513013.
@article{osti_1513013,
title = {Visualization of clustered protocadherin neuronal self-recognition complexes},
author = {Brasch, Julia and Goodman, Kerry M. and Noble, Alex J. and Rapp, Micah and Mannepalli, Seetha and Bahna, Fabiana and Dandey, Venkata P. and Bepler, Tristan and Berger, Bonnie and Maniatis, Tom and Potter, Clinton S. and Carragher, Bridget and Honig, Barry and Shapiro, Lawrence},
abstractNote = {Neurite self-recognition and avoidance are fundamental properties of all nervous systems. These processes facilitate dendritic arborization, prevent formation of autapses and allow free interaction among non-self neurons. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, β- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities. Avoidance is observed between neurons that express identical protocadherin repertoires, and single-isoform differences are sufficient to prevent self-recognition. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers. Although these interactions have previously been characterized in isolation, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Furthermore, our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains.},
doi = {10.1038/s41586-019-1089-3},
journal = {Nature (London)},
number = 7755,
volume = 569,
place = {United States},
year = {Wed Apr 10 00:00:00 EDT 2019},
month = {Wed Apr 10 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity
journal, November 2015


Developmental Epigenetic Modification Regulates Stochastic Expression of Clustered Protocadherin Genes, Generating Single Neuron Diversity
journal, April 2014


Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4
journal, July 2016


Protocadherins mediate dendritic self-avoidance in the mammalian nervous system
journal, July 2012

  • Lefebvre, Julie L.; Kostadinov, Dimitar; Chen, Weisheng V.
  • Nature, Vol. 488, Issue 7412
  • DOI: 10.1038/nature11305

Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
journal, November 2016

  • Kimanius, Dari; Forsberg, Björn O.; Scheres, Sjors HW
  • eLife, Vol. 5
  • DOI: 10.7554/eLife.18722

Fast tomographic reconstruction on multicore computers
journal, December 2010


Routine single particle CryoEM sample and grid characterization by tomography
journal, May 2018


Molecular codes for neuronal individuality and cell assembly in the brain
journal, January 2012


Fully automated, sequential tilt-series acquisition with Leginon
journal, July 2009

  • Suloway, Christian; Shi, Jian; Cheng, Anchi
  • Journal of Structural Biology, Vol. 167, Issue 1
  • DOI: 10.1016/j.jsb.2009.03.019

Appion: An integrated, database-driven pipeline to facilitate EM image processing
journal, April 2009

  • Lander, Gabriel C.; Stagg, Scott M.; Voss, Neil R.
  • Journal of Structural Biology, Vol. 166, Issue 1
  • DOI: 10.1016/j.jsb.2009.01.002

Automated molecular microscopy: The new Leginon system
journal, July 2005

  • Suloway, Christian; Pulokas, James; Fellmann, Denis
  • Journal of Structural Biology, Vol. 151, Issue 1
  • DOI: 10.1016/j.jsb.2005.03.010

Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function
journal, July 2015


Single-Cell Identity Generated by Combinatorial Homophilic Interactions between α, β, and γ Protocadherins
journal, August 2014


Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography
journal, February 2006


γ-Protocadherin structural diversity and functional implications
journal, October 2016

  • Goodman, Kerry Marie; Rubinstein, Rotem; Thu, Chan Aye
  • eLife, Vol. 5
  • DOI: 10.7554/eLife.20930

SignalP 4.0: discriminating signal peptides from transmembrane regions
journal, September 2011

  • Petersen, Thomas Nordahl; Brunak, Søren; von Heijne, Gunnar
  • Nature Methods, Vol. 8, Issue 10
  • DOI: 10.1038/nmeth.1701

The Extracellular Architecture of Adherens Junctions Revealed by Crystal Structures of Type I Cadherins
journal, February 2011


Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase
journal, June 2012

  • Suo, Lun; Lu, Huinan; Ying, Guoxin
  • Journal of Molecular Cell Biology, Vol. 4, Issue 6
  • DOI: 10.1093/jmcb/mjs034

Structural origins of clustered protocadherin-mediated neuronal barcoding
journal, September 2017

  • Rubinstein, Rotem; Goodman, Kerry Marie; Maniatis, Tom
  • Seminars in Cell & Developmental Biology, Vol. 69
  • DOI: 10.1016/j.semcdb.2017.07.023

Automated batch fiducial-less tilt-series alignment in Appion using Protomo
journal, November 2015


Optimizing “self-wicking” nanowire grids
journal, May 2018

  • Wei, Hui; Dandey, Venkata P.; Zhang, Zhening
  • Journal of Structural Biology, Vol. 202, Issue 2
  • DOI: 10.1016/j.jsb.2018.01.001

Spotiton: New features and applications
journal, May 2018

  • Dandey, Venkata P.; Wei, Hui; Zhang, Zhening
  • Journal of Structural Biology, Vol. 202, Issue 2
  • DOI: 10.1016/j.jsb.2018.01.002

Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization
journal, July 2015

  • Keeler, Austin B.; Schreiner, Dietmar; Weiner, Joshua A.
  • Journal of Biological Chemistry, Vol. 290, Issue 34
  • DOI: 10.1074/jbc.M115.642306

MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
journal, February 2017

  • Zheng, Shawn Q.; Palovcak, Eugene; Armache, Jean-Paul
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4193

Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly
journal, October 2010


Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis
journal, May 2006

  • Strong, M.; Sawaya, M. R.; Wang, S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 21
  • DOI: 10.1073/pnas.0602606103

Presenilin-dependent Processing and Nuclear Function of  -Protocadherins
journal, December 2004

  • Haas, I. G.; Frank, M.; Veron, N.
  • Journal of Biological Chemistry, Vol. 280, Issue 10
  • DOI: 10.1074/jbc.M412909200

Dynamo: A flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments
journal, May 2012

  • Castaño-Díez, Daniel; Kudryashev, Mikhail; Arheit, Marcel
  • Journal of Structural Biology, Vol. 178, Issue 2
  • DOI: 10.1016/j.jsb.2011.12.017

Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance
journal, February 2018


Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM
journal, July 2012


Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity
journal, May 2016


Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly
journal, April 2017

  • Mountoufaris, George; Chen, Weisheng V.; Hirabayashi, Yusuke
  • Science, Vol. 356, Issue 6336
  • DOI: 10.1126/science.aai8801

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
journal, October 2019


Combinatorial homophilic interaction between  -protocadherin multimers greatly expands the molecular diversity of cell adhesion
journal, August 2010

  • Schreiner, D.; Weiner, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 33
  • DOI: 10.1073/pnas.1004526107

Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions
journal, October 2015


Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins
journal, May 2016


Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction
journal, February 2015

  • Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus
  • Journal of Structural Biology, Vol. 189, Issue 2
  • DOI: 10.1016/j.jsb.2014.11.009

Comparative DNA Sequence Analysis of Mouse and Human Protocadherin Gene Clusters
journal, March 2001


Regulation of Wnt signaling by protocadherins
journal, September 2017


The Molecular Basis of Self-Avoidance
journal, July 2013


Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms
journal, February 2017

  • Castaño-Díez, Daniel; Kudryashev, Mikhail; Stahlberg, Henning
  • Journal of Structural Biology, Vol. 197, Issue 2
  • DOI: 10.1016/j.jsb.2016.06.005

A new method for vitrifying samples for cryoEM
journal, August 2016

  • Razinkov, Ivan; Dandey, Venkata P.; Wei, Hui
  • Journal of Structural Biology, Vol. 195, Issue 2
  • DOI: 10.1016/j.jsb.2016.06.001

Convolutional neural networks for automated annotation of cellular cryo-electron tomograms
journal, August 2017

  • Chen, Muyuan; Dai, Wei; Sun, Stella Y.
  • Nature Methods, Vol. 14, Issue 10
  • DOI: 10.1038/nmeth.4405

Protocadherin cis -dimer architecture and recognition unit diversity
journal, October 2017

  • Goodman, Kerry M.; Rubinstein, Rotem; Dan, Hanbin
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 46
  • DOI: 10.1073/pnas.1713449114

Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret
journal, June 2010

  • Schalm, S. S.; Ballif, B. A.; Buchanan, S. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 31
  • DOI: 10.1073/pnas.1007182107

Works referencing / citing this record:

Expression of protocadherin‐γC4 protein in the rat brain
journal, November 2019

  • Miralles, Celia P.; Taylor, Michael J.; Bear, John
  • Journal of Comparative Neurology, Vol. 528, Issue 5
  • DOI: 10.1002/cne.24783

Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
journal, October 2019


Interaction specificity of clustered protocadherins inferred from sequence covariation and structural analysis
journal, August 2019

  • Nicoludis, John M.; Green, Anna G.; Walujkar, Sanket
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 36
  • DOI: 10.1073/pnas.1821063116

The VIA Annotation Software for Images, Audio and Video
conference, October 2019

  • Dutta, Abhishek; Zisserman, Andrew
  • MM '19: The 27th ACM International Conference on Multimedia, Proceedings of the 27th ACM International Conference on Multimedia
  • DOI: 10.1145/3343031.3350535

Pcdhβ deficiency affects hippocampal CA1 ensemble activity and contextual fear discrimination
journal, January 2020


CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4
journal, December 2019


Pcdhβ deficiency affects hippocampal CA1 ensemble activity and contextual fear discrimination
journal, January 2020