DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions

Abstract

Beneficial plant-microbe interactions offer a sustainable biological solution with the potential to boost low-input food and bioenergy production. A better mechanistic understanding of these complex plant-microbe interactions will be crucial to improving plant production as well as performing basic ecological studies investigating plant-soil-microbe interactions. Here, a detailed description for ecosystem fabrication is presented, using widely available 3D printing technologies, to create controlled laboratory habitats (EcoFABs) for mechanistic studies of plant-microbe interactions within specific environmental conditions. Two sizes of EcoFABs are described that are suited for the investigation of microbial interactions with various plant species, including Arabidopsis thaliana, Brachypodium distachyon, and Panicum virgatum. These flow-through devices allow for controlled manipulation and sampling of root microbiomes, root chemistry as well as imaging of root morphology and microbial localization. This protocol includes the details for maintaining sterile conditions inside EcoFABs and mounting independent LED light systems onto EcoFABs. Detailed methods for addition of different forms of media, including soils, sand, and liquid growth media coupled to the characterization of these systems using imaging and metabolomics are described. Together, these systems enable dynamic and detailed investigation of plant and plant-microbial consortia including the manipulation of microbiome composition (including mutants), the monitoring of plant growth,more » root morphology, exudate composition, and microbial localization under controlled environmental conditions. We anticipate that these detailed protocols will serve as an important starting point for other researchers, ideally helping create standardized experimental systems for investigating plant-microbe interactions.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [3];  [3];  [4];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Genomics and Systems Biology Division; USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
  2. Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States)
  3. USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
  4. Univ. of California, Berkeley, CA (United States). Dept. of Environmental Science Policy and Management
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); LBNL Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1506304
Grant/Contract Number:  
AC02-05CH11231; SC0014079
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Visualized Experiments
Additional Journal Information:
Journal Volume: 2018; Journal Issue: 134; Journal ID: ISSN 1940-087X
Publisher:
MyJoVE Corp.
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 54 ENVIRONMENTAL SCIENCES; environmental sciences; laboratory ecosystems; EcoFAB; plant-microbe interactions; microbiome; root morphology; root exudates; LC-MS; NIMS; metabolomics; microscopic imaging

Citation Formats

Gao, Jian, Sasse, Joelle, Lewald, Kyle M., Zhalnina, Kateryna, Cornmesser, Lloyd T., Duncombe, Todd A., Yoshikuni, Yasuo, Vogel, John P., Firestone, Mary K., and Northen, Trent R. Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. United States: N. p., 2018. Web. doi:10.3791/57170.
Gao, Jian, Sasse, Joelle, Lewald, Kyle M., Zhalnina, Kateryna, Cornmesser, Lloyd T., Duncombe, Todd A., Yoshikuni, Yasuo, Vogel, John P., Firestone, Mary K., & Northen, Trent R. Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. United States. https://doi.org/10.3791/57170
Gao, Jian, Sasse, Joelle, Lewald, Kyle M., Zhalnina, Kateryna, Cornmesser, Lloyd T., Duncombe, Todd A., Yoshikuni, Yasuo, Vogel, John P., Firestone, Mary K., and Northen, Trent R. Tue . "Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions". United States. https://doi.org/10.3791/57170. https://www.osti.gov/servlets/purl/1506304.
@article{osti_1506304,
title = {Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions},
author = {Gao, Jian and Sasse, Joelle and Lewald, Kyle M. and Zhalnina, Kateryna and Cornmesser, Lloyd T. and Duncombe, Todd A. and Yoshikuni, Yasuo and Vogel, John P. and Firestone, Mary K. and Northen, Trent R.},
abstractNote = {Beneficial plant-microbe interactions offer a sustainable biological solution with the potential to boost low-input food and bioenergy production. A better mechanistic understanding of these complex plant-microbe interactions will be crucial to improving plant production as well as performing basic ecological studies investigating plant-soil-microbe interactions. Here, a detailed description for ecosystem fabrication is presented, using widely available 3D printing technologies, to create controlled laboratory habitats (EcoFABs) for mechanistic studies of plant-microbe interactions within specific environmental conditions. Two sizes of EcoFABs are described that are suited for the investigation of microbial interactions with various plant species, including Arabidopsis thaliana, Brachypodium distachyon, and Panicum virgatum. These flow-through devices allow for controlled manipulation and sampling of root microbiomes, root chemistry as well as imaging of root morphology and microbial localization. This protocol includes the details for maintaining sterile conditions inside EcoFABs and mounting independent LED light systems onto EcoFABs. Detailed methods for addition of different forms of media, including soils, sand, and liquid growth media coupled to the characterization of these systems using imaging and metabolomics are described. Together, these systems enable dynamic and detailed investigation of plant and plant-microbial consortia including the manipulation of microbiome composition (including mutants), the monitoring of plant growth, root morphology, exudate composition, and microbial localization under controlled environmental conditions. We anticipate that these detailed protocols will serve as an important starting point for other researchers, ideally helping create standardized experimental systems for investigating plant-microbe interactions.},
doi = {10.3791/57170},
journal = {Journal of Visualized Experiments},
number = 134,
volume = 2018,
place = {United States},
year = {Tue Apr 10 00:00:00 EDT 2018},
month = {Tue Apr 10 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)
journal, September 2007


Understanding and exploiting plant beneficial microbes
journal, August 2017

  • Finkel, Omri M.; Castrillo, Gabriel; Herrera Paredes, Sur
  • Current Opinion in Plant Biology, Vol. 38
  • DOI: 10.1016/j.pbi.2017.04.018

Rhizosphere bacteria help plants tolerate abiotic stress
journal, January 2009


The role of nutrient availability in regulating root architecture
journal, June 2003

  • López-Bucio, José; Cruz-Ramı́rez, Alfredo; Herrera-Estrella, Luis
  • Current Opinion in Plant Biology, Vol. 6, Issue 3, p. 280-287
  • DOI: 10.1016/s1369-5266(03)00035-9

OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging
journal, October 2013

  • Rübel, Oliver; Greiner, Annette; Cholia, Shreyas
  • Analytical Chemistry, Vol. 85, Issue 21
  • DOI: 10.1021/ac402540a

Combining Stable Isotope Labeling and Molecular Networking for Biosynthetic Pathway Characterization
journal, June 2015


Application of Black Silicon for Nanostructure-Initiator Mass Spectrometry
journal, January 2016


Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry
journal, May 2017


A microfluidic device and computational platform for high-throughput live imaging of gene expression
journal, September 2012

  • Busch, Wolfgang; Moore, Brad T.; Martsberger, Bradley
  • Nature Methods, Vol. 9, Issue 11
  • DOI: 10.1038/nmeth.2185

Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis
journal, July 2008

  • Woo, Hin-Koon; Northen, Trent R.; Yanes, Oscar
  • Nature Protocols, Vol. 3, Issue 8
  • DOI: 10.1038/nprot.2008.110

Plant chip for high-throughput phenotyping of Arabidopsis
journal, January 2014

  • Jiang, Huawei; Xu, Zhen; Aluru, Maneesha R.
  • Lab Chip, Vol. 14, Issue 7
  • DOI: 10.1039/c3lc51326b

Microfluidic platforms for plant cells studies
journal, January 2014


Fabrication of microfluidic devices using polydimethylsiloxane
journal, June 2010

  • Friend, James; Yeo, Leslie
  • Biomicrofluidics, Vol. 4, Issue 2
  • DOI: 10.1063/1.3259624

Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling
journal, April 2013

  • Sanati Nezhad, A.; Naghavi, M.; Packirisamy, M.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 20
  • DOI: 10.1073/pnas.1221677110

Shining a light on the dark world of plant root–microbe interactions
journal, April 2017


Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
journal, January 2013


The RootChip: An Integrated Microfluidic Chip for Plant Science
journal, December 2011

  • Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W.
  • The Plant Cell, Vol. 23, Issue 12
  • DOI: 10.1105/tpc.111.092577

Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria
journal, November 2005


Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops
journal, November 2014

  • Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi
  • Plant Biotechnology Journal, Vol. 12, Issue 9
  • DOI: 10.1111/pbi.12279

Research priorities for harnessing plant microbiomes in sustainable agriculture
journal, March 2017


Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases
journal, July 2015


Works referencing / citing this record:

Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry
journal, July 2018