DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning for molecular dynamics with strongly correlated electrons

Abstract

We use machine learning to enable large-scale molecular dynamics (MD) of a correlated electron model under the Gutzwiller approximation scheme. This model exhibits a Mott transition as a function of on-site Coulomb repulsion U. The repeated solution of the Gutzwiller self-consistency equations would be prohibitively expensive for large-scale MD simulations. We show that machine learning models of the Gutzwiller potential energy can be remarkably accurate. The models, which are trained with N = 33 atoms, enable highly accurate MD simulations at much larger scales (N ≳103). Here, we investigate the physics of the smooth Mott crossover in the fluid phase.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [2];  [3];  [4];  [2]
  1. The Univ. of Tennessee, Knoxville, TN (United States); The Univ. of Tokyo, Tokyo (Japan)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of Virginia, Charlottesville, VA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1572324
Alternate Identifier(s):
OSTI ID: 1505839
Report Number(s):
LA-UR-18-31198
Journal ID: ISSN 2469-9950; PRBMDO; TRN: US2100060
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 16; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Material Science

Citation Formats

Suwa, Hidemaro, Smith, Justin Steven, Lubbers, Nicholas Edward, Batista, Cristian D., Chern, Gia-Wei, and Barros, Kipton. Machine learning for molecular dynamics with strongly correlated electrons. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.161107.
Suwa, Hidemaro, Smith, Justin Steven, Lubbers, Nicholas Edward, Batista, Cristian D., Chern, Gia-Wei, & Barros, Kipton. Machine learning for molecular dynamics with strongly correlated electrons. United States. https://doi.org/10.1103/PhysRevB.99.161107
Suwa, Hidemaro, Smith, Justin Steven, Lubbers, Nicholas Edward, Batista, Cristian D., Chern, Gia-Wei, and Barros, Kipton. Mon . "Machine learning for molecular dynamics with strongly correlated electrons". United States. https://doi.org/10.1103/PhysRevB.99.161107. https://www.osti.gov/servlets/purl/1572324.
@article{osti_1572324,
title = {Machine learning for molecular dynamics with strongly correlated electrons},
author = {Suwa, Hidemaro and Smith, Justin Steven and Lubbers, Nicholas Edward and Batista, Cristian D. and Chern, Gia-Wei and Barros, Kipton},
abstractNote = {We use machine learning to enable large-scale molecular dynamics (MD) of a correlated electron model under the Gutzwiller approximation scheme. This model exhibits a Mott transition as a function of on-site Coulomb repulsion U. The repeated solution of the Gutzwiller self-consistency equations would be prohibitively expensive for large-scale MD simulations. We show that machine learning models of the Gutzwiller potential energy can be remarkably accurate. The models, which are trained with N = 33 atoms, enable highly accurate MD simulations at much larger scales (N ≳103). Here, we investigate the physics of the smooth Mott crossover in the fluid phase.},
doi = {10.1103/PhysRevB.99.161107},
journal = {Physical Review B},
number = 16,
volume = 99,
place = {United States},
year = {Mon Apr 08 00:00:00 EDT 2019},
month = {Mon Apr 08 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The density-matrix renormalization group in the age of matrix product states
journal, January 2011


Machine learning for many-body physics: The case of the Anderson impurity model
journal, October 2014

  • Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
  • Physical Review B, Vol. 90, Issue 15
  • DOI: 10.1103/PhysRevB.90.155136

Finite-temperature Gutzwiller approximation and the phase diagram of a toy model for V 2 O 3
journal, May 2013


ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

Finite-temperature Gutzwiller projection for strongly correlated electron systems
journal, September 2010


Machine learning quantum phases of matter beyond the fermion sign problem
journal, August 2017


Quantum Monte Carlo simulations of solids
journal, January 2001


Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

On complex probabilities
journal, November 1983


Machine Learning Phases of Strongly Correlated Fermions
journal, August 2017


Parallel tempering algorithm for integration over Lefschetz thimbles
journal, July 2017

  • Fukuma, Masafumi; Umeda, Naoya
  • Progress of Theoretical and Experimental Physics, Vol. 2017, Issue 7
  • DOI: 10.1093/ptep/ptx081

Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

Constant pressure hybrid Molecular Dynamics–Monte Carlo simulations
journal, January 2002

  • Faller, Roland; de Pablo, Juan J.
  • The Journal of Chemical Physics, Vol. 116, Issue 1
  • DOI: 10.1063/1.1420460

Reweighting complex Langevin trajectories
journal, March 2017


Quantum Entanglement in Deep Learning Architectures
journal, February 2019


Approximating quantum many-body wave functions using artificial neural networks
journal, January 2018


Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

Explicit inclusion of electronic correlation effects in molecular dynamics
journal, July 2017


Density matrix formulation for quantum renormalization groups
journal, November 1992


SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Electronic structure calculations with dynamical mean-field theory
journal, August 2006


Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Machine learning for quantum mechanics in a nutshell
journal, July 2015

  • Rupp, Matthias
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24954

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Improving the accuracy of Møller-Plesset perturbation theory with neural networks
journal, October 2017

  • McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.
  • The Journal of Chemical Physics, Vol. 147, Issue 16
  • DOI: 10.1063/1.4986081

Hubbard Hamiltonian for the hydrogen molecule
journal, May 2007


Eigenvector Continuation with Subspace Learning
journal, July 2018


New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble
journal, October 2012


Machine learning for molecular and materials science
journal, July 2018


Solving the quantum many-body problem with artificial neural networks
journal, February 2017


Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Works referencing / citing this record:

Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model
journal, July 2019