skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Li 3 BN 2 as a Transition Metal Free, High Capacity Cathode for Li-ion Batteries

Abstract

Li3BN2 is investigated for the first time as a transition metal free, high capacity cathode material for Li-ion batteries. It is shown that α-Li3BN2 can exhibit a specific capacity of 890 mA h g-1 with the charge storage mechanism associated with the valence state change of N ions in the BN2 anion. The particular capacity demonstrated in this study is the highest one ever reported in literature for an intercalation-type cathode material. Moreover, using the valence state change of N ions as a charge storage mechanism opens the door for designing additional high performance, transition metal free electrodes in the future.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [1]; ORCiD logo [1]
  1. Illinois Inst. of Technology, Chicago, IL (United States)
  2. Stanford Univ., Stanford, CA (United States); ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1505526
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ChemElectroChem
Additional Journal Information:
Journal Volume: 6; Journal Issue: 2; Journal ID: ISSN 2196-0216
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Li3BN2; Cathodes; Transition metal free electrodes; Li-ion batteries

Citation Formats

Emani, Satyanarayana, Liu, Caihong, Ashuri, Maziar, Sahni, Karan, Wu, Jinpeng, Yang, Wanli, Németh, Károly, and Shaw, Leon L. Li 3 BN 2 as a Transition Metal Free, High Capacity Cathode for Li-ion Batteries. United States: N. p., 2018. Web. doi:10.1002/celc.201801415.
Emani, Satyanarayana, Liu, Caihong, Ashuri, Maziar, Sahni, Karan, Wu, Jinpeng, Yang, Wanli, Németh, Károly, & Shaw, Leon L. Li 3 BN 2 as a Transition Metal Free, High Capacity Cathode for Li-ion Batteries. United States. doi:10.1002/celc.201801415.
Emani, Satyanarayana, Liu, Caihong, Ashuri, Maziar, Sahni, Karan, Wu, Jinpeng, Yang, Wanli, Németh, Károly, and Shaw, Leon L. Wed . "Li 3 BN 2 as a Transition Metal Free, High Capacity Cathode for Li-ion Batteries". United States. doi:10.1002/celc.201801415. https://www.osti.gov/servlets/purl/1505526.
@article{osti_1505526,
title = {Li 3 BN 2 as a Transition Metal Free, High Capacity Cathode for Li-ion Batteries},
author = {Emani, Satyanarayana and Liu, Caihong and Ashuri, Maziar and Sahni, Karan and Wu, Jinpeng and Yang, Wanli and Németh, Károly and Shaw, Leon L.},
abstractNote = {Li3BN2 is investigated for the first time as a transition metal free, high capacity cathode material for Li-ion batteries. It is shown that α-Li3BN2 can exhibit a specific capacity of 890 mA h g-1 with the charge storage mechanism associated with the valence state change of N ions in the BN2 anion. The particular capacity demonstrated in this study is the highest one ever reported in literature for an intercalation-type cathode material. Moreover, using the valence state change of N ions as a charge storage mechanism opens the door for designing additional high performance, transition metal free electrodes in the future.},
doi = {10.1002/celc.201801415},
journal = {ChemElectroChem},
number = 2,
volume = 6,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Charge/discharge behavior of an α-Li3BN2 half cell at the 0.1C rate in a 2032 coin cell. Anode – Li foil; Cathode – 45 wt% CB, 10 wt% PVDF and 45 wt% α-Li3BN2; Electrolyte – 1M LiCF3SO3 in NMP, and (b) cyclic voltammogram of α-Li3BN2 half cells withmore » a Li foil as the counter and reference electrode. Scan rate: 0.2 mA/s between 1.2 and 2.7 V. Note that cells with different CB concentrations exhibit similar CV curves.« less

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Studies of local degradation phenomena in composite cathodes for lithium-ion batteries
journal, May 2007


Li 2 S encapsulated by nitrogen-doped carbon for lithium sulfur batteries
journal, January 2014

  • Chen, Lin; Liu, Yuzi; Ashuri, Maziar
  • J. Mater. Chem. A, Vol. 2, Issue 42
  • DOI: 10.1039/C4TA04103H

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries
journal, December 2011

  • Lee, Eun-Sung; Huq, Ashfia; Chang, Hong-Young
  • Chemistry of Materials, Vol. 24, Issue 3
  • DOI: 10.1021/cm2034992

Understanding Inhomogeneous Reactions in Li-Ion Batteries: Operando Synchrotron X-Ray Diffraction on Two-Layer Electrodes
journal, May 2015

  • Sasaki, Tsuyoshi; Villevieille, Claire; Takeuchi, Yoji
  • Advanced Science, Vol. 2, Issue 7
  • DOI: 10.1002/advs.201500083

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Effect of High Voltage on the Structure and Electrochemistry of LiNi 0.5 Mn 0.5 O 2 :  A Joint Experimental and Theoretical Study
journal, October 2006

  • Bréger, Julien; Meng, Ying S.; Hinuma, Yoyo
  • Chemistry of Materials, Vol. 18, Issue 20
  • DOI: 10.1021/cm060886r

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface
journal, May 2014

  • Yao, Hongbin; Zheng, Guangyuan; Hsu, Po-Chun
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4943

High- and low-temperature phases of lithium boron nitride, Li3BN2: Preparation, phase relation, crystal structure, and ionic conductivity
journal, November 1987


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Li 3 N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries
journal, March 2016

  • Park, Kyusung; Yu, Byeong-Chul; Goodenough, John B.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502534

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Na 3 [BN 2 ] and Na 2 K[BN 2 ]: A Known and a Novel Alkali Metal Dinitridoborate Obtained via Mild Thermal Dehydrogenation : Na
journal, January 2014

  • Koz, Cevriye; Acar, Selçuk; Prots, Yurii
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 640, Issue 2
  • DOI: 10.1002/zaac.201300445

Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C
journal, April 2007

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Electrochemistry Communications, Vol. 9, Issue 4, p. 787-795
  • DOI: 10.1016/j.elecom.2006.11.006

Surficial Chemical States of Li<sub>3</sub>N Synthesized on Lithium Target for Boron Neutron Capture Therapy
journal, January 2014


Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

New insights into the electrode mechanism of lithium sulfur batteries via air-free post-test analysis
journal, January 2016

  • Chen, Lin; Dietz Rago, Nancy L.; Bloom, Ira D.
  • Chemical Communications, Vol. 52, Issue 64
  • DOI: 10.1039/C6CC04401H

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
journal, June 2012


Visualization of the State-of-Charge Distribution in a LiCoO 2 Cathode by In Situ Raman Imaging
journal, January 2013

  • Nishi, Toshio; Nakai, Hideki; Kita, Akinori
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.061310jes

Stabilized Li3N for efficient battery cathode prelithiation
journal, January 2017


    Works referencing / citing this record:

    Computer Test of a New Silicene Anode for Lithium‐Ion Batteries
    journal, January 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.