DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study

Abstract

Although extensive efforts have been devoted to understanding electronic transport in conjugated polymers, little is known about their ionic conduction characteristics in relation to polymer chemistry, processing, and morphology. This work presents a combined computational and experimental study on morphology and ion transport in thin-film blends of polythiophene derivatives bearing oligoethylene glycol side-chains and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Using molecular dynamics (MD) simulation, we show that in the amorphous phase, the polythiophene derivative P3MEET bearing oligoethylene glycol side-chains with oxygen directly attached to the thiophene rings possesses lower Li+ ionic conductivity compared to its analog P3MEEMT that has a methyl spacer between the oxygen and the thiophene rings. Structural characterization of P3MEET and P3MEEMT thin film upon blending with LiTFSI indicates that adding LiTFSI expands the side-chain domains of the polymer crystallites and reduces the total degree of crystallinity at the same time. Moreover, LiTFSI is found to infiltrate both the amorphous and crystalline regimes at low concentrations but preferably resides in the amorphous domain at high LiTFSI concentrations. Ionic transport measured by electrochemical impedance spectroscopy in both P3MEET- and P3MEEMT-LiTFSI thin films is found to occur predominately in the amorphous domain, and ionic conductivity in P3MEEMT-LiTFSI is always higher thanmore » in P3MEET-LiTFSI samples, consistent with predictions from MD simulations. As a result, our work provides a platform to predict and study the influence of polymer chemistry on the ionic conductivity of conjugated polymers.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [5]
  1. Univ. of Chicago, Chicago, IL (United States)
  2. Cornell Univ., Ithaca, NY (United States)
  3. Univ. of Washington, Seattle, WA (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States)
  5. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
1498068
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 4; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; Conjugated polymer; LiTFSI; MD simulation; ionic conduction; mixed conduction; polar side-chains

Citation Formats

Dong, Ban Xuan, Nowak, Christian, Onorato, Jonathan W., Strzalka, Joseph, Escobedo, Fernando A., Luscombe, Christine K., Nealey, Paul F., and Patel, Shrayesh N. Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study. United States: N. p., 2019. Web. doi:10.1021/acs.chemmater.8b05257.
Dong, Ban Xuan, Nowak, Christian, Onorato, Jonathan W., Strzalka, Joseph, Escobedo, Fernando A., Luscombe, Christine K., Nealey, Paul F., & Patel, Shrayesh N. Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study. United States. https://doi.org/10.1021/acs.chemmater.8b05257
Dong, Ban Xuan, Nowak, Christian, Onorato, Jonathan W., Strzalka, Joseph, Escobedo, Fernando A., Luscombe, Christine K., Nealey, Paul F., and Patel, Shrayesh N. Fri . "Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study". United States. https://doi.org/10.1021/acs.chemmater.8b05257. https://www.osti.gov/servlets/purl/1498068.
@article{osti_1498068,
title = {Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study},
author = {Dong, Ban Xuan and Nowak, Christian and Onorato, Jonathan W. and Strzalka, Joseph and Escobedo, Fernando A. and Luscombe, Christine K. and Nealey, Paul F. and Patel, Shrayesh N.},
abstractNote = {Although extensive efforts have been devoted to understanding electronic transport in conjugated polymers, little is known about their ionic conduction characteristics in relation to polymer chemistry, processing, and morphology. This work presents a combined computational and experimental study on morphology and ion transport in thin-film blends of polythiophene derivatives bearing oligoethylene glycol side-chains and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Using molecular dynamics (MD) simulation, we show that in the amorphous phase, the polythiophene derivative P3MEET bearing oligoethylene glycol side-chains with oxygen directly attached to the thiophene rings possesses lower Li+ ionic conductivity compared to its analog P3MEEMT that has a methyl spacer between the oxygen and the thiophene rings. Structural characterization of P3MEET and P3MEEMT thin film upon blending with LiTFSI indicates that adding LiTFSI expands the side-chain domains of the polymer crystallites and reduces the total degree of crystallinity at the same time. Moreover, LiTFSI is found to infiltrate both the amorphous and crystalline regimes at low concentrations but preferably resides in the amorphous domain at high LiTFSI concentrations. Ionic transport measured by electrochemical impedance spectroscopy in both P3MEET- and P3MEEMT-LiTFSI thin films is found to occur predominately in the amorphous domain, and ionic conductivity in P3MEEMT-LiTFSI is always higher than in P3MEET-LiTFSI samples, consistent with predictions from MD simulations. As a result, our work provides a platform to predict and study the influence of polymer chemistry on the ionic conductivity of conjugated polymers.},
doi = {10.1021/acs.chemmater.8b05257},
journal = {Chemistry of Materials},
number = 4,
volume = 31,
place = {United States},
year = {Fri Feb 15 00:00:00 EST 2019},
month = {Fri Feb 15 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Flexible organic transistors and circuits with extreme bending stability
journal, November 2010

  • Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen
  • Nature Materials, Vol. 9, Issue 12
  • DOI: 10.1038/nmat2896

Printing Highly Efficient Organic Solar Cells
journal, September 2008

  • Hoth, Claudia N.; Schilinsky, Pavel; Choulis, Stelios A.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl801365k

25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon
journal, January 2014


25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors
journal, September 2013


Simultaneous Conduction of Electronic Charge and Lithium Ions in Block Copolymers
journal, January 2012

  • Patel, Shrayesh N.; Javier, Anna E.; Stone, Greg M.
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn2045664

Simultaneous Electronic and Ionic Conduction in a Block Copolymer: Application in Lithium Battery Electrodes
journal, September 2011

  • Javier, Anna E.; Patel, Shrayesh N.; Hallinan, Daniel T.
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201102953

Organic light-emitting diode (OLED) technology: materials, devices and display technologies
journal, January 2006

  • Geffroy, Bernard; le Roy, Philippe; Prat, Christophe
  • Polymer International, Vol. 55, Issue 6
  • DOI: 10.1002/pi.1974

Conjugated Polymer-Based Organic Solar Cells
journal, April 2007

  • Günes, Serap; Neugebauer, Helmut; Sariciftci, Niyazi Serdar
  • Chemical Reviews, Vol. 107, Issue 4, p. 1324-1338
  • DOI: 10.1021/cr050149z

Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years)
journal, August 2008


In vivo recordings of brain activity using organic transistors
journal, March 2013

  • Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2573

The Rise of Organic Bioelectronics
journal, September 2013

  • Rivnay, Jonathan; Owens, Róisín M.; Malliaras, George G.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4022003

Organic Electronics at the Interface with Biology
journal, June 2010

  • Owens, Róisín M.; Malliaras, George G.
  • MRS Bulletin, Vol. 35, Issue 6
  • DOI: 10.1557/mrs2010.583

Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors
journal, January 2010

  • Lee, Kangwon; Povlich, Laura K.; Kim, Jinsang
  • The Analyst, Vol. 135, Issue 9
  • DOI: 10.1039/c0an00239a

Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO[sub 4] (M=Fe, Mn) Electrode Materials
journal, January 2005

  • Delacourt, C.; Laffont, L.; Bouchet, R.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1884787

Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability
journal, April 2014

  • Liu, Tianyu; Finn, Lauren; Yu, Minghao
  • Nano Letters, Vol. 14, Issue 5, p. 2522-2527
  • DOI: 10.1021/nl500255v

Electrochromic organic and polymeric materials for display applications
journal, January 2006


A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
journal, October 1991

  • O'Regan, Brian; Grätzel, Michael
  • Nature, Vol. 353, Issue 6346, p. 737-740
  • DOI: 10.1038/353737a0

Artificial Muscles from Fishing Line and Sewing Thread
journal, February 2014


Conjugated Polymers in Bioelectronics
journal, May 2018


Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors
journal, June 2017

  • Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.
  • Nature Materials, Vol. 16, Issue 7
  • DOI: 10.1038/nmat4918

Nanoscale Orientation Effects on Carrier Transport in a Low-Band-Gap Polymer
journal, July 2014

  • Dong, Ban Xuan; Huang, Bingyuan; Tan, Aaron
  • The Journal of Physical Chemistry C, Vol. 118, Issue 31
  • DOI: 10.1021/jp506374m

Percolation, Tie-Molecules, and the Microstructural Determinants of Charge Transport in Semicrystalline Conjugated Polymers
journal, June 2015


Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films
journal, April 2014

  • Duong, Duc T.; Ho, Victor; Shang, Zhengrong
  • Advanced Functional Materials, Vol. 24, Issue 28
  • DOI: 10.1002/adfm.201304247

Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight
journal, April 2005

  • Kline, R. Joseph; McGehee, Michael D.; Kadnikova, Ekaterina N.
  • Macromolecules, Vol. 38, Issue 8, p. 3312-3319
  • DOI: 10.1021/ma047415f

Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer
journal, July 2013

  • Zhang, Xinran; Bronstein, Hugo; Kronemeijer, Auke J.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3238

Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers
journal, January 2016

  • Inal, Sahika; Malliaras, George G.; Rivnay, Jonathan
  • Journal of Materials Chemistry C, Vol. 4, Issue 18
  • DOI: 10.1039/C5TC04354A

Structural control of mixed ionic and electronic transport in conducting polymers
journal, April 2016

  • Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11287

Direct Measurement of Ion Mobility in a Conducting Polymer
journal, June 2013

  • Stavrinidou, Eleni; Leleux, Pierre; Rajaona, Harizo
  • Advanced Materials, Vol. 25, Issue 32
  • DOI: 10.1002/adma.201301240

Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
journal, August 2016

  • Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu
  • Journal of the American Chemical Society, Vol. 138, Issue 32
  • DOI: 10.1021/jacs.6b05280

Controlling the mode of operation of organic transistors through side-chain engineering
journal, October 2016

  • Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1608780113

Polymerized Ionic Liquids with Polythiophene Backbones: Self-Assembly, Thermal Properties, and Ion Conduction
journal, August 2018


Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films
journal, December 2017

  • Dong, Ban Xuan; Strzalka, Joseph; Jiang, Zhang
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 51
  • DOI: 10.1021/acsami.7b13609

Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films
journal, February 2013

  • Jimison, Leslie H.; Himmelberger, Scott; Duong, Duc T.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 51, Issue 7
  • DOI: 10.1002/polb.23265

Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors
journal, November 2012

  • Himmelberger, Scott; Dacuña, Javier; Rivnay, Jonathan
  • Advanced Functional Materials, Vol. 23, Issue 16
  • DOI: 10.1002/adfm.201202408

Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility
journal, November 2011


A general relationship between disorder, aggregation and charge transport in conjugated polymers
journal, August 2013

  • Noriega, Rodrigo; Rivnay, Jonathan; Vandewal, Koen
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3722

Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study
journal, January 1993


Quantification of Thin Film Crystallographic Orientation Using X-ray Diffraction with an Area Detector
journal, June 2010

  • Baker, Jessy L.; Jimison, Leslie H.; Mannsfeld, Stefan
  • Langmuir, Vol. 26, Issue 11
  • DOI: 10.1021/la904840q

Molecular Characterization of Organic Electronic Films
journal, August 2010

  • DeLongchamp, Dean M.; Kline, R. Joseph; Fischer, Daniel A.
  • Advanced Materials, Vol. 23, Issue 3
  • DOI: 10.1002/adma.201001760

Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophene
journal, April 2017

  • Kroon, Renee; Kiefer, David; Stegerer, Dominik
  • Advanced Materials, Vol. 29, Issue 24
  • DOI: 10.1002/adma.201700930

Structural Model of Regioregular Poly(3-hexylthiophene) Obtained by Electron Diffraction Analysis
journal, June 2010

  • Kayunkid, Navaphun; Uttiya, Sureeporn; Brinkmann, Martin
  • Macromolecules, Vol. 43, Issue 11, p. 4961-4967
  • DOI: 10.1021/ma100551m

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Modelling of P3HT:PCBM interface using coarse-grained forcefield derived from accurate atomistic forcefield
journal, January 2014

  • To, T. T.; Adams, S.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54308k

Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts
journal, September 1983


Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations
journal, February 2006

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 39, Issue 4
  • DOI: 10.1021/ma052277v

Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents
journal, November 2004

  • Chang, Jui-Fen; Sun, Baoquan; Breiby, Dag W.
  • Chemistry of Materials, Vol. 16, Issue 23, p. 4772-4776
  • DOI: 10.1021/cm049617w

Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics
journal, September 2016

  • Dong, Ban Xuan; Li, Anton; Strzalka, Joseph
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 55, Issue 1
  • DOI: 10.1002/polb.24237

Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells
journal, September 2011

  • Hammond, Matthew R.; Kline, R. Joseph; Herzing, Andrew A.
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn202951e

Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid
journal, July 2017

  • Guardado, Jesus O.; Salleo, Alberto
  • Advanced Functional Materials, Vol. 27, Issue 32
  • DOI: 10.1002/adfm.201701791

Relationship between Mobility and Lattice Strain in Electrochemically Doped Poly(3-hexylthiophene)
journal, November 2015


X-Ray Scattering Reveals Ion-Induced Microstructural Changes During Electrochemical Gating of Poly(3-Hexylthiophene)
journal, September 2018

  • Thomas, Elayne M.; Brady, Michael A.; Nakayama, Hidenori
  • Advanced Functional Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adfm.201803687

Proton Transport Property in Supported Nafion Nanothin Films by Electrochemical Impedance Spectroscopy
journal, January 2014

  • Paul, Devproshad K.; McCreery, Richard; Karan, Kunal
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0571414jes

Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
journal, January 2016


Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes
journal, January 2018

  • Sharon, Daniel; Bennington, Peter; Liu, Claire
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0291816jes

Self-Assembly Behavior of an Oligothiophene-Based Conjugated Liquid Crystal and Its Implication for Ionic Conductivity Characteristics
journal, November 2018

  • Liu, Ziwei; Dong, Ban Xuan; Misra, Mayank
  • Advanced Functional Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adfm.201805220

Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Works referencing / citing this record:

Organic mixed ionic–electronic conductors
journal, August 2019


Structural effects on the charge transport properties of chemically and electrochemically doped dioxythiophene polymers
journal, January 2020

  • Pittelli, Sandra L.; De Keersmaecker, Michel; Ponder Jr, James F.
  • Journal of Materials Chemistry C, Vol. 8, Issue 2
  • DOI: 10.1039/c9tc05697a

Balancing Ionic and Electronic Conduction for High‐Performance Organic Electrochemical Transistors
journal, January 2020

  • Savva, Achilleas; Hallani, Rawad; Cendra, Camila
  • Advanced Functional Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adfm.201907657