skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fully relativistic form factor for Thomson scattering

Abstract

We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, $$\overset{\rightharpoonup}{β}$$ = $$\overset{\rightharpoonup}{v}$$/ c . The form factor is compared to a previously derived expression where the lowest order electron velocity, $$\overset{\rightharpoonup}{β}$$, corrections are included [J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)]. The $$\overset{\rightharpoonup}{β}$$ expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra. $$\overset{\rightharpoonup}{β}$$

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1497305
Report Number(s):
LLNL-JRNL-418764
Journal ID: ISSN 1539-3755; PLEEE8; 380391
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Additional Journal Information:
Journal Volume: 81; Journal Issue: 3; Journal ID: ISSN 1539-3755
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Palastro, J. P., Ross, J. S., Pollock, B., Divol, L., Froula, D. H., and Glenzer, S. H. Fully relativistic form factor for Thomson scattering. United States: N. p., 2010. Web. doi:10.1103/PhysRevE.81.036411.
Palastro, J. P., Ross, J. S., Pollock, B., Divol, L., Froula, D. H., & Glenzer, S. H. Fully relativistic form factor for Thomson scattering. United States. doi:10.1103/PhysRevE.81.036411.
Palastro, J. P., Ross, J. S., Pollock, B., Divol, L., Froula, D. H., and Glenzer, S. H. Wed . "Fully relativistic form factor for Thomson scattering". United States. doi:10.1103/PhysRevE.81.036411. https://www.osti.gov/servlets/purl/1497305.
@article{osti_1497305,
title = {Fully relativistic form factor for Thomson scattering},
author = {Palastro, J. P. and Ross, J. S. and Pollock, B. and Divol, L. and Froula, D. H. and Glenzer, S. H.},
abstractNote = {We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, $\overset{\rightharpoonup}{β}$ = $\overset{\rightharpoonup}{v}$/ c . The form factor is compared to a previously derived expression where the lowest order electron velocity, $\overset{\rightharpoonup}{β}$, corrections are included [J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)]. The $\overset{\rightharpoonup}{β}$ expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra. $\overset{\rightharpoonup}{β}$},
doi = {10.1103/PhysRevE.81.036411},
journal = {Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics},
number = 3,
volume = 81,
place = {United States},
year = {2010},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Scattering geometry as defined in text.

Save / Share:

Works referenced in this record:

Analytic formula for fully relativistic Thomson scattering spectrum
journal, November 1993

  • Naito, O.; Yoshida, H.; Matoba, T.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 11
  • DOI: 10.1063/1.860593

Analysis of light scattering data from relativistic plasmas
journal, March 1975


An analytic formula for the relativistic Thomson scattering spectrum for a Maxwellian velocity distribution
journal, June 2008


The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Improved performance of the Thomson scattering system in RFX
journal, February 1999

  • Pasqualotto, R.; Sardella, A.; Intravaia, A.
  • Review of Scientific Instruments, Vol. 70, Issue 2
  • DOI: 10.1063/1.1149629

Thomson Scattering from Inertial-Confinement-Fusion Hohlraum Plasmas
journal, August 1997


Stimulated Brillouin scattering in the saturated regime
journal, May 2003

  • Froula, D. H.; Divol, L.; Braun, D. G.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1542887

Analytical Approximations in the Theory of Relativistic Thomson Scattering for High Temperature Fusion Plasma
journal, June 1979

  • Matoba, Tohru; Itagaki, Tokiyoshi; Yamauchi, Toshihiko
  • Japanese Journal of Applied Physics, Vol. 18, Issue 6
  • DOI: 10.1143/JJAP.18.1127

Dielectric effects on Thomson scattering in a relativistic magnetized plasma
journal, November 1991


Radially and axially resolved Thomson scattering in a gas-liner pinch
journal, May 2000


Observation of Relativistic Effects in Collective Thomson Scattering
journal, March 2010


Electromagnetic Wave Scattering from a High-Temperature Plasma
journal, January 1967


Ion temperature measurement of tokamak plasmas by collective Thomson scattering of D 2 O laser radiation
journal, June 1989


Measurements of Nonlinear Growth of Ion-Acoustic Waves in Two-Ion-Species Plasmas with Thomson Scattering
journal, February 2002


Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3
journal, November 1969

  • Peacock, N. J.; Robinson, D. C.; Forrest, M. J.
  • Nature, Vol. 224, Issue 5218
  • DOI: 10.1038/224488a0

    Works referencing / citing this record:

    Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas
    journal, November 2012

    • Ellis, I. N.; Strozzi, D. J.; Winjum, B. J.
    • Physics of Plasmas, Vol. 19, Issue 11
    • DOI: 10.1063/1.4762853

    Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas
    journal, November 2012


    Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas
    journal, November 2012

    • Ellis, I. N.; Strozzi, D. J.; Winjum, B. J.
    • Physics of Plasmas, Vol. 19, Issue 11
    • DOI: 10.1063/1.4762853

    Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas
    journal, November 2012