skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes

Abstract

The gut microbiome plays a fundamental role in the human host’s overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn’s disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn’s disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn’s disease patients’ post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins,more » and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. As a result, the measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. In conclusion, the human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome’s metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harvard Medical School, Boston, MA (United States)
  3. Univ. of Maryland School of Medicine, Baltimore, MD (United States); UT Southwestern Medical Center, Dallas, TX (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); U.S. Food and Drug Administration, College Park, MD (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  7. Univ. of Maryland School of Medicine, Baltimore, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1495989
Alternate Identifier(s):
OSTI ID: 1507756
Report Number(s):
PNNL-SA-139569
Journal ID: ISSN 2049-2618
Grant/Contract Number:  
AC05-00OR22725; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Microbiome
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2049-2618
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Gut microbiome; Metaproteomics; Crohn’s disease; Longitudinal analyses; Microbial metabolic function; Human microbiome

Citation Formats

Blakeley-Ruiz, J. Alfredo, Erickson, Alison R., Cantarel, Brandi L., Xiong, Weili, Adams, Rachel, Jansson, Janet K., Fraser, Claire M., and Hettich, Robert L. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes. United States: N. p., 2019. Web. doi:10.1186/s40168-019-0631-8.
Blakeley-Ruiz, J. Alfredo, Erickson, Alison R., Cantarel, Brandi L., Xiong, Weili, Adams, Rachel, Jansson, Janet K., Fraser, Claire M., & Hettich, Robert L. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes. United States. doi:10.1186/s40168-019-0631-8.
Blakeley-Ruiz, J. Alfredo, Erickson, Alison R., Cantarel, Brandi L., Xiong, Weili, Adams, Rachel, Jansson, Janet K., Fraser, Claire M., and Hettich, Robert L. Mon . "Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes". United States. doi:10.1186/s40168-019-0631-8. https://www.osti.gov/servlets/purl/1495989.
@article{osti_1495989,
title = {Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes},
author = {Blakeley-Ruiz, J. Alfredo and Erickson, Alison R. and Cantarel, Brandi L. and Xiong, Weili and Adams, Rachel and Jansson, Janet K. and Fraser, Claire M. and Hettich, Robert L.},
abstractNote = {The gut microbiome plays a fundamental role in the human host’s overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn’s disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn’s disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn’s disease patients’ post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. As a result, the measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. In conclusion, the human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome’s metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.},
doi = {10.1186/s40168-019-0631-8},
journal = {Microbiome},
number = 1,
volume = 7,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Search and clustering orders of magnitude faster than BLAST
journal, August 2010


The Acetate Switch
journal, March 2005