skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 1, 2020

Title: Phonon thermal conductance across GaN-AlN interfaces from first principles

Abstract

The vibrational thermal conductances (G) across GaN-AlN interfaces are computed using a nonequilibrium Green's function formalism in the harmonic limit with bulk and interfacial interatomic force constants (IFCs) fully from density functional theory. Several numerical methods and supercell configurations are employed to examine the sensitivity of G to variances of IFCs. In particular, the effects of supercell size, the enforcement of symmetry constraints, and truncation of IFCs near the interface, and atomic relaxation on phonon transmission and conductance are explored. Our fully first-principles calculations are compared with common approximations and measured G values inferred from thermal conductivity measurements for GaN-AlN superlattices. Here, our calculated value, G~300MWm -2K -1, is nearly half that from measurements. This discrepancy is critically analyzed in terms of the physical assumptions of the calculations and the derivation of the experimental values. This work provides guidelines to determine “physically correct” sets of interfacial IFCs from first principles for thermal conductance calculations using minimal computational resources. It also contributes toward developing predictive calculations and a more complete picture of thermal conduction across interfaces, a step toward first-principles multiscale thermal transport.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1494888
Alternate Identifier(s):
OSTI ID: 1493969
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 7; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Polanco, Carlos A., and Lindsay, Lucas R. Phonon thermal conductance across GaN-AlN interfaces from first principles. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.075202.
Polanco, Carlos A., & Lindsay, Lucas R. Phonon thermal conductance across GaN-AlN interfaces from first principles. United States. doi:10.1103/PhysRevB.99.075202.
Polanco, Carlos A., and Lindsay, Lucas R. Fri . "Phonon thermal conductance across GaN-AlN interfaces from first principles". United States. doi:10.1103/PhysRevB.99.075202.
@article{osti_1494888,
title = {Phonon thermal conductance across GaN-AlN interfaces from first principles},
author = {Polanco, Carlos A. and Lindsay, Lucas R.},
abstractNote = {The vibrational thermal conductances (G) across GaN-AlN interfaces are computed using a nonequilibrium Green's function formalism in the harmonic limit with bulk and interfacial interatomic force constants (IFCs) fully from density functional theory. Several numerical methods and supercell configurations are employed to examine the sensitivity of G to variances of IFCs. In particular, the effects of supercell size, the enforcement of symmetry constraints, and truncation of IFCs near the interface, and atomic relaxation on phonon transmission and conductance are explored. Our fully first-principles calculations are compared with common approximations and measured G values inferred from thermal conductivity measurements for GaN-AlN superlattices. Here, our calculated value, G~300MWm-2K-1, is nearly half that from measurements. This discrepancy is critically analyzed in terms of the physical assumptions of the calculations and the derivation of the experimental values. This work provides guidelines to determine “physically correct” sets of interfacial IFCs from first principles for thermal conductance calculations using minimal computational resources. It also contributes toward developing predictive calculations and a more complete picture of thermal conduction across interfaces, a step toward first-principles multiscale thermal transport.},
doi = {10.1103/PhysRevB.99.075202},
journal = {Physical Review B},
number = 7,
volume = 99,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 1, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
journal, July 2013


Some effects of oxygen impurities on AlN and GaN
journal, December 2002

  • Slack, Glen A.; Schowalter, Leo J.; Morelli, Donald
  • Journal of Crystal Growth, Vol. 246, Issue 3-4, p. 287-298
  • DOI: 10.1016/S0022-0248(02)01753-0