skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using convolutional neural networks to predict galaxy metallicity from three-colour images

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1494377
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 484 Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Oxford University Press
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Wu, John F., and Boada, Steven. Using convolutional neural networks to predict galaxy metallicity from three-colour images. United Kingdom: N. p., 2019. Web. doi:10.1093/mnras/stz333.
Wu, John F., & Boada, Steven. Using convolutional neural networks to predict galaxy metallicity from three-colour images. United Kingdom. doi:10.1093/mnras/stz333.
Wu, John F., and Boada, Steven. Fri . "Using convolutional neural networks to predict galaxy metallicity from three-colour images". United Kingdom. doi:10.1093/mnras/stz333.
@article{osti_1494377,
title = {Using convolutional neural networks to predict galaxy metallicity from three-colour images},
author = {Wu, John F. and Boada, Steven},
abstractNote = {},
doi = {10.1093/mnras/stz333},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 484,
place = {United Kingdom},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1093/mnras/stz333

Save / Share: