skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis

Abstract

In situ transmission electron microscopy reveals that an atomically thin crystalline phase at the surface of liquid Au–Si is stable over an unexpectedly wide range of conditions. By measuring the surface structure as a function of liquid temperature and composition, a simple thermodynamic model is developed to explain the stability of the ordered phase. The presence of surface ordering plays a key role in the pathway by which the Au–Si eutectic solidifies and also dramatically affects the catalytic properties of the liquid, explaining the anomalously slow growth kinetics of Si nanowires at low temperature. A strategy to control the presence of the surface phase is discussed, using it as a tool in designing strategies for nanostructure growth.

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [3];  [3];  [4];  [2]
  1. Univ. of Cambridge (United Kingdom). Dept. of Engineering; IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)
  2. IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials
  4. Univ. of Cambridge (United Kingdom). Dept. of Engineering
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Univ. of Cambridge (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); European Research Council (ERC); Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1494373
Alternate Identifier(s):
OSTI ID: 1484542; OSTI ID: 1514490
Report Number(s):
BNL-211597-2019-JAAM
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
SC0012704; 279342; EP/K016636/1; EP/P005152/1
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 5; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D crystals; in situ transmission electron microscopy; metastable phases; nanowires; surface ordering

Citation Formats

Panciera, Federico, Tersoff, Jerry, Gamalski, Andrew D., Reuter, Mark C., Zakharov, Dmitri, Stach, Eric A., Hofmann, Stephan, and Ross, Frances M. Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis. United States: N. p., 2018. Web. doi:10.1002/adma.201806544.
Panciera, Federico, Tersoff, Jerry, Gamalski, Andrew D., Reuter, Mark C., Zakharov, Dmitri, Stach, Eric A., Hofmann, Stephan, & Ross, Frances M. Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis. United States. doi:10.1002/adma.201806544.
Panciera, Federico, Tersoff, Jerry, Gamalski, Andrew D., Reuter, Mark C., Zakharov, Dmitri, Stach, Eric A., Hofmann, Stephan, and Ross, Frances M. Wed . "Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis". United States. doi:10.1002/adma.201806544.
@article{osti_1494373,
title = {Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis},
author = {Panciera, Federico and Tersoff, Jerry and Gamalski, Andrew D. and Reuter, Mark C. and Zakharov, Dmitri and Stach, Eric A. and Hofmann, Stephan and Ross, Frances M.},
abstractNote = {In situ transmission electron microscopy reveals that an atomically thin crystalline phase at the surface of liquid Au–Si is stable over an unexpectedly wide range of conditions. By measuring the surface structure as a function of liquid temperature and composition, a simple thermodynamic model is developed to explain the stability of the ordered phase. The presence of surface ordering plays a key role in the pathway by which the Au–Si eutectic solidifies and also dramatically affects the catalytic properties of the liquid, explaining the anomalously slow growth kinetics of Si nanowires at low temperature. A strategy to control the presence of the surface phase is discussed, using it as a tool in designing strategies for nanostructure growth.},
doi = {10.1002/adma.201806544},
journal = {Advanced Materials},
number = 5,
volume = 31,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/adma.201806544

Figures / Tables:

Figure 1 Figure 1: Crystalline ordering at the surface of Au–Si liquid. a) The 2D surface phase on a 50 nm diameter droplet at 350 °C visualized by adding aberration-corrected subimages aligned to remove effects of drift. A crystalline bilayer is visible with interlayer spacing 0.35 nm (Table S1, Supporting Information). Themore » contrast visible over the entire liquid droplet is assumed to be a projection of ordering present on top and bottom surfaces. b) Surface ordering on a smaller 12 nm diameter droplet at 350 °C. Several 2D domains are visible separated by high-curvature boundaries. Thermal motion of the structure is shown in Movie S1 in the Supporting Information. c) Schematic summary of the evolution during cooling and heating, with insets showing one particular droplet during cooling. d) Image obtained during heating of a solid Au particle on Si. At the time shown, T = 360 °C and the Au has partially reacted with Si so that eutectic liquid covers part of its surface. Ordering is visible both on the liquid surface and on the (111) surface of the remaining solid Au. All scale bars are 2 nm.« less

Save / Share:

Works referenced in this record:

Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires
journal, March 2006


The Au−Si (Gold-Silicon) system
journal, September 1983

  • Okamoto, H.; Massalski, T. B.
  • Bulletin of Alloy Phase Diagrams, Vol. 4, Issue 2
  • DOI: 10.1007/BF02884878

A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides
journal, October 2017


Germanium Nanowire Growth Below the Eutectic Temperature
journal, May 2007


A thermodynamic evaluation of the Au-Ge and Au-Si systems
journal, March 1989


Vapor-liquid-solid mechanism of single crystal growth
journal, March 1964

  • Wagner, R. S.; Ellis, W. C.
  • Applied Physics Letters, Vol. 4, Issue 5, p. 89-90
  • DOI: 10.1063/1.1753975

Surface Crystallization in a Liquid AuSi Alloy
journal, July 2006

  • Shpyrko, Oleg G.; Streitel, Reinhard; Balagurusamy, Venkatachalapathy S. K.
  • Science, Vol. 313, Issue 5783
  • DOI: 10.1126/science.1128314

Two-dimensional freezing in the liquid-vapor interface of a dilute Pb:Ga alloy
journal, November 1999

  • Yang, B.; Gidalevitz, D.; Li, D.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 23
  • DOI: 10.1073/pnas.96.23.13009

Self-Consistent Interpretation of the 2D Structure of the Liquid Au 82 Si 18 Surface: Bending Rigidity and the Debye-Waller Effect
journal, October 2010


Phase transitions in wetting films at the surface of Ga–Pb alloys
journal, November 2009

  • Calmes, Cyril; Giuranno, Donatella; Chatain, Dominique
  • Journal of Materials Science, Vol. 44, Issue 22
  • DOI: 10.1007/s10853-009-3563-z

Controlling nanowire growth through electric field-induced deformation of the catalyst droplet
journal, July 2016

  • Panciera, Federico; Norton, Michael M.; Alam, Sardar B.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12271

Surface structure of the liquid Au 72 Ge 28 eutectic phase: X-ray reflectivity
journal, September 2009


Vapour–liquid–solid growth of monolayer MoS2 nanoribbons
journal, April 2018


Crystalline surface phases of the liquid Au-Si eutectic alloy
journal, December 2007

  • Shpyrko, Oleg G.; Streitel, Reinhard; Balagurusamy, Venkatachalapathy S. K.
  • Physical Review B, Vol. 76, Issue 24
  • DOI: 10.1103/PhysRevB.76.245436

Surface Layering in Liquid Gallium: An X-Ray Reflectivity Study
journal, September 1995


Single-crystalline kinked semiconductor nanowire superstructures
journal, October 2009

  • Tian, Bozhi; Xie, Ping; Kempa, Thomas J.
  • Nature Nanotechnology, Vol. 4, Issue 12
  • DOI: 10.1038/nnano.2009.304

Substrate-enhanced supercooling in AuSi eutectic droplets
journal, April 2010

  • Schülli, T. U.; Daudin, R.; Renaud, G.
  • Nature, Vol. 464, Issue 7292
  • DOI: 10.1038/nature08986

Growth, Defect Formation, and Morphology Control of Germanium–Silicon Semiconductor Nanowire Heterostructures
journal, October 2011

  • Dayeh, Shadi A.; Wang, Jian; Li, Nan
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl202126q

Gallium-rich Pd–Ga phases as supported liquid metal catalysts
journal, July 2017

  • Taccardi, N.; Grabau, M.; Debuschewitz, J.
  • Nature Chemistry, Vol. 9, Issue 9
  • DOI: 10.1038/nchem.2822

Surface freezing in liquid Ga–Bi alloys: optical second harmonic and plasma generation study
journal, January 2002

  • Turchanin, A.; Freyland, W.; Nattland, D.
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 4
  • DOI: 10.1039/b107478b

Solid-phase diffusion mechanism for GaAs nanowire growth
journal, September 2004

  • Persson, Ann I.; Larsson, Magnus W.; Stenström, Stig
  • Nature Materials, Vol. 3, Issue 10
  • DOI: 10.1038/nmat1220

X-Ray Reflectivity Measurements of Surface Layering in Liquid Mercury
journal, May 1995


Two-dimensional freezing of Tl in the liquid-vapor interface of dilute Tl in a Ga alloy
journal, June 2003


Thermal Properties of Gold‐Silicon Binary Alloy near the Eutectic Composition
journal, August 1967

  • Chen, H. S.; Turnbull, D.
  • Journal of Applied Physics, Vol. 38, Issue 9
  • DOI: 10.1063/1.1710186

Formation of an Au-Si eutectic on a clean silicon surface
journal, January 2009


Vapor–Liquid–Solid Growth of Silicon–Germanium Nanowires
journal, December 2003


Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth
journal, October 2016

  • Pinion, Christopher W.; Hill, David J.; Christesen, Joseph D.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 20
  • DOI: 10.1021/acs.jpclett.6b01918

Crystallization of amorphous silicon during thin‐film gold reaction
journal, November 1987

  • Hultman, L.; Robertsson, A.; Hentzell, H. T. G.
  • Journal of Applied Physics, Vol. 62, Issue 9
  • DOI: 10.1063/1.339244

Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires
journal, January 2010

  • Schmidt, V.; Wittemann, J. V.; Gösele, U.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900141g

Surface-induced melting and freezing II. A semi-empirical Landau-type model
journal, December 1990


Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry
journal, May 2012

  • Zhang, M.; Wen, J. G.; Efremov, M. Y.
  • Journal of Applied Physics, Vol. 111, Issue 9
  • DOI: 10.1063/1.4712342

Effect of growth conditions on the composition and structure of Si 1− x Ge x nanowires grown by vapor–liquid–solid growth
journal, November 2006

  • Lew, Kok-Keong; Pan, Ling; Dickey, Elizabeth C.
  • Journal of Materials Research, Vol. 21, Issue 11
  • DOI: 10.1557/jmr.2006.0349

Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism
journal, November 2007

  • Adhikari, Hemant; McIntyre, Paul C.; Marshall, Ann F.
  • Journal of Applied Physics, Vol. 102, Issue 9
  • DOI: 10.1063/1.2803893

Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver–Gold Alloy Catalysts
journal, June 2012

  • Chou, Yi-Chia; Wen, Cheng-Yen; Reuter, Mark C.
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn301978x

Formation of Metastable Liquid Catalyst during Subeutectic Growth of Germanium Nanowires
journal, August 2010

  • Gamalski, A. D.; Tersoff, J.; Sharma, R.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101349e

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.