skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning electron correlation in a disordered medium

Authors:
; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1494228
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 99 Journal Issue: 8; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Ma, Jianhua, Zhang, Puhan, Tan, Yaohua, Ghosh, Avik W., and Chern, Gia-Wei. Machine learning electron correlation in a disordered medium. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.085118.
Ma, Jianhua, Zhang, Puhan, Tan, Yaohua, Ghosh, Avik W., & Chern, Gia-Wei. Machine learning electron correlation in a disordered medium. United States. doi:10.1103/PhysRevB.99.085118.
Ma, Jianhua, Zhang, Puhan, Tan, Yaohua, Ghosh, Avik W., and Chern, Gia-Wei. Mon . "Machine learning electron correlation in a disordered medium". United States. doi:10.1103/PhysRevB.99.085118.
@article{osti_1494228,
title = {Machine learning electron correlation in a disordered medium},
author = {Ma, Jianhua and Zhang, Puhan and Tan, Yaohua and Ghosh, Avik W. and Chern, Gia-Wei},
abstractNote = {},
doi = {10.1103/PhysRevB.99.085118},
journal = {Physical Review B},
number = 8,
volume = 99,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevB.99.085118

Save / Share:

Works referenced in this record:

Quantum Entanglement in Neural Network States
journal, May 2017


Machine learning for many-body physics: The case of the Anderson impurity model
journal, October 2014

  • Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
  • Physical Review B, Vol. 90, Issue 15
  • DOI: 10.1103/PhysRevB.90.155136

Finding Density Functionals with Machine Learning
journal, June 2012


Anderson-Hubbard model in infinite dimensions
journal, April 1995


Machine learning quantum phases of matter beyond the fermion sign problem
journal, August 2017


Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
journal, March 2015


Studies of polaron motion
journal, November 1959


Big–deep–smart data in imaging for guiding materials design
journal, September 2015

  • Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4395

Machine Learning Phases of Strongly Correlated Fermions
journal, August 2017


Efficient implementation of the Gutzwiller variational method
journal, January 2012


Mean Field Theory of the Mott-Anderson Transition
journal, May 1997


Machine-learning approach for local classification of crystalline structures in multiphase systems
journal, July 2017


Probing many-body localization with neural networks
journal, June 2017


Glassy Behavior of Electrons Near Metal-Insulator Transitions
journal, January 2003


Self-learning quantum Monte Carlo method in interacting fermion systems
journal, July 2017


Machine learning for autonomous crystal structure identification
journal, January 2017

  • Reinhart, Wesley F.; Long, Andrew W.; Howard, Michael P.
  • Soft Matter, Vol. 13, Issue 27
  • DOI: 10.1039/C7SM00957G

Ground-state properties of the disordered Hubbard model in two dimensions
journal, February 2010


Discovering phase transitions with unsupervised learning
journal, November 2016


Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
journal, March 2015


Electronic Griffiths Phase of the d = 2 Mott Transition
journal, May 2009


Holstein-Hubbard model at half filling: A static auxiliary field study
journal, October 2015


Understanding machine-learned density functionals: Understanding Machine-Learned Density Functionals
journal, November 2015

  • Li, Li; Snyder, John C.; Pelaschier, Isabelle M.
  • International Journal of Quantum Chemistry, Vol. 116, Issue 11
  • DOI: 10.1002/qua.25040

Solving the quantum many-body problem with artificial neural networks
journal, February 2017


Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Inhomogeneous Metallic Phase in a Disordered Mott Insulator in Two Dimensions
journal, September 2004


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


New Functional Integral Approach to Strongly Correlated Fermi Systems: The Gutzwiller Approximation as a Saddle Point
journal, September 1986


Self-learning Monte Carlo method
journal, January 2017


Inferring low-dimensional microstructure representations using convolutional neural networks
journal, November 2017


Critical Behavior at the Mott-Anderson Transition: A Typical-Medium Theory Perspective
journal, April 2009


Accelerated Monte Carlo simulations with restricted Boltzmann machines
journal, January 2017


Effect of Correlation on the Ferromagnetism of Transition Metals
journal, March 1963


Disorder Screening in Strongly Correlated Systems
journal, August 2003


Magnetic correlations in the two-dimensional Anderson-Hubbard model
journal, February 1997


Bypassing the Kohn-Sham equations with machine learning
journal, October 2017


Quantum Ripples in Strongly Correlated Metals
journal, June 2010


Phase Diagram and Electronic Structure of Praseodymium and Plutonium
journal, January 2015


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Local moments and magnetic order in the two-dimensional Anderson-Mott transition
journal, January 2009

  • Pezzoli, Maria Elisabetta; Becca, Federico; Fabrizio, Michele
  • Physical Review B, Vol. 79, Issue 3
  • DOI: 10.1103/PhysRevB.79.033111

Mott-Hubbard Transition versus Anderson Localization in Correlated Electron Systems with Disorder
journal, February 2005


Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
journal, April 2018

  • Balachandran, Prasanna V.; Kowalski, Benjamin; Sehirlioglu, Alp
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03821-9

Disorder-Driven Metal-Insulator Transitions in Deformable Lattices
journal, January 2017


Orbital-free bond breaking via machine learning
journal, December 2013

  • Snyder, John C.; Rupp, Matthias; Hansen, Katja
  • The Journal of Chemical Physics, Vol. 139, Issue 22
  • DOI: 10.1063/1.4834075

Learning scheme to predict atomic forces and accelerate materials simulations
journal, September 2015


Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

Typical medium theory of Anderson localization: A local order parameter approach to strong-disorder effects
journal, April 2003

  • Dobrosavljević, V.; Pastor, A. A.; Nikolić, B. K.
  • Europhysics Letters (EPL), Vol. 62, Issue 1
  • DOI: 10.1209/epl/i2003-00364-5

Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996

  • Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
  • Reviews of Modern Physics, Vol. 68, Issue 1
  • DOI: 10.1103/RevModPhys.68.13

Learning thermodynamics with Boltzmann machines
journal, October 2016


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Single-Particle Excitations under Coexisting Electron Correlation and Disorder: A Numerical Study of the Anderson–Hubbard Model
journal, September 2009

  • Shinaoka, Hiroshi; Imada, Masatoshi
  • Journal of the Physical Society of Japan, Vol. 78, Issue 9
  • DOI: 10.1143/JPSJ.78.094708

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks
journal, February 2016


Pure density functional for strong correlation and the thermodynamic limit from machine learning
journal, December 2016


Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Quantum Loop Topography for Machine Learning
journal, May 2017


A structural approach to relaxation in glassy liquids
journal, February 2016

  • Schoenholz, S. S.; Cubuk, E. D.; Sussman, D. M.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3644

Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
journal, June 2017


On the Design, Analysis, and Characterization of Materials Using Computational Neural Networks
journal, August 1996