DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regioselective Hydrogenation of Itaconic Acid to γ‐Isovalerolactone by Transition‐Metal Nanoparticle Catalysts

Abstract

Abstract Current methods for hydrogenation of bio‐derived itaconic acid (IA) lead to a mixture of isomeric lactone products. Transition‐metal nanoparticles (TM‐NPs), in situ‐generated through thermolysis of TM(0) (Ru, Fe, W, Cr) carbonyls, in particular Ru‐NPs, were found to catalyze regioselective hydrogenation of IA by syngas (2 H 2 /CO) into γ‐isovalerolactone (GiVL) in approximately 70 % isolated yield. Key sustainability features of this new route include: a one‐pot direct transformation of bio‐renewable IA into value‐added GiVL selectively, use of inexpensive and renewable syngas in aqueous solution, and development of a supported recyclable NP catalyst system, Al 2 O 3 ‐Ru‐NPs.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Department of Chemistry Colorado State University Fort Collins Colorado 80523-1872 United States
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1492760
Grant/Contract Number:  
FG02-10ER16193; SC0005413
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Name: ChemSusChem Journal Volume: 12 Journal Issue: 5; Journal ID: ISSN 1864-5631
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Gowda, Ravikumar R., and Chen, Eugene Y. ‐X. Regioselective Hydrogenation of Itaconic Acid to γ‐Isovalerolactone by Transition‐Metal Nanoparticle Catalysts. Germany: N. p., 2019. Web. doi:10.1002/cssc.201802878.
Gowda, Ravikumar R., & Chen, Eugene Y. ‐X. Regioselective Hydrogenation of Itaconic Acid to γ‐Isovalerolactone by Transition‐Metal Nanoparticle Catalysts. Germany. https://doi.org/10.1002/cssc.201802878
Gowda, Ravikumar R., and Chen, Eugene Y. ‐X. Tue . "Regioselective Hydrogenation of Itaconic Acid to γ‐Isovalerolactone by Transition‐Metal Nanoparticle Catalysts". Germany. https://doi.org/10.1002/cssc.201802878.
@article{osti_1492760,
title = {Regioselective Hydrogenation of Itaconic Acid to γ‐Isovalerolactone by Transition‐Metal Nanoparticle Catalysts},
author = {Gowda, Ravikumar R. and Chen, Eugene Y. ‐X.},
abstractNote = {Abstract Current methods for hydrogenation of bio‐derived itaconic acid (IA) lead to a mixture of isomeric lactone products. Transition‐metal nanoparticles (TM‐NPs), in situ‐generated through thermolysis of TM(0) (Ru, Fe, W, Cr) carbonyls, in particular Ru‐NPs, were found to catalyze regioselective hydrogenation of IA by syngas (2 H 2 /CO) into γ‐isovalerolactone (GiVL) in approximately 70 % isolated yield. Key sustainability features of this new route include: a one‐pot direct transformation of bio‐renewable IA into value‐added GiVL selectively, use of inexpensive and renewable syngas in aqueous solution, and development of a supported recyclable NP catalyst system, Al 2 O 3 ‐Ru‐NPs.},
doi = {10.1002/cssc.201802878},
journal = {ChemSusChem},
number = 5,
volume = 12,
place = {Germany},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cssc.201802878

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System
journal, June 2010

  • Geilen, Frank M. A.; Engendahl, Barthel; Harwardt, Andreas
  • Angewandte Chemie International Edition, Vol. 49, Issue 32, p. 5510-5514
  • DOI: 10.1002/anie.201002060

Nonenzymatic Sugar Production from Biomass Using Biomass-Derived  -Valerolactone
journal, January 2014


Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents
journal, January 2012

  • Gürbüz, Elif I.; Wettstein, Stephanie G.; Dumesic, James A.
  • ChemSusChem, Vol. 5, Issue 2, p. 383-387
  • DOI: 10.1002/cssc.201100608

Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2
journal, January 2011

  • Primo, Ana; Concepción, Patricia; Corma, Avelino
  • Chemical Communications, Vol. 47, Issue 12
  • DOI: 10.1039/c0cc05206j

Heterocycle construction using the biomass-derived building block itaconic acid
journal, January 2014

  • Medway, Alexandra M.; Sperry, Jonathan
  • Green Chem., Vol. 16, Issue 4
  • DOI: 10.1039/C4GC00014E

Solvents from nature
journal, January 2008


Biochemistry of microbial itaconic acid production
journal, January 2013

  • Steiger, Matthias G.; Blumhoff, Marzena L.; Mattanovich, Diethard
  • Frontiers in Microbiology, Vol. 4
  • DOI: 10.3389/fmicb.2013.00023

Reduced Transition Metal Colloids:  A Novel Family of Reusable Catalysts?
journal, October 2002

  • Roucoux, Alain; Schulz, Jürgen; Patin, Henri
  • Chemical Reviews, Vol. 102, Issue 10
  • DOI: 10.1021/cr010350j

Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium– N -Triphos Complexes
journal, March 2015

  • Phanopoulos, Andreas; White, Andrew J. P.; Long, Nicholas J.
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs502025t

Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited
journal, January 2010

  • Bozell, Joseph J.; Petersen, Gene R.
  • Green Chemistry, Vol. 12, Issue 4, p. 539-554
  • DOI: 10.1039/b922014c

Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: From Stereo-random to Stereo-perfect Polymers
journal, April 2012

  • Chen, Xia; Caporaso, Lucia; Cavallo, Luigi
  • Journal of the American Chemical Society, Vol. 134, Issue 17
  • DOI: 10.1021/ja301811s

Enantioselective hydrogenation of itaconic acid and its derivates with sol–gel immobilized Rh/BPPM catalysts
journal, January 2013


Various metal nanoparticles produced by accelerated electron beam irradiation of room-temperature ionic liquid
journal, January 2012

  • Tsuda, Tetsuya; Sakamoto, Taiki; Nishimura, Yoshitomo
  • Chemical Communications, Vol. 48, Issue 13
  • DOI: 10.1039/c2cc16183d

Use of Gamma-Valerolactone as an Illuminating Liquid and Lighter Fluid
journal, July 2015


Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts
journal, September 2010


Preparing acid-resistant Ru-based catalysts by carbothermal reduction for hydrogenation of itaconic acid
journal, January 2015

  • Huang, Qianqian; Yu, Weiqiang; Lu, Rui
  • RSC Advances, Vol. 5, Issue 118
  • DOI: 10.1039/C5RA16239D

Preparation and use of a chiral amine ruthenium hydrogenation catalyst supported on mesoporous silica
journal, April 2003

  • Pérez, Cuauhtemoc; Pérez, Salud; Fuentes, Gustavo A.
  • Journal of Molecular Catalysis A: Chemical, Vol. 197, Issue 1-2
  • DOI: 10.1016/S1381-1169(02)00654-4

Selective Homogeneous Hydrogenation of Biogenic Carboxylic Acids with [Ru(TriPhos)H] + : A Mechanistic Study
journal, September 2011

  • Geilen, Frank M. A.; Engendahl, Barthel; Hölscher, Markus
  • Journal of the American Chemical Society, Vol. 133, Issue 36
  • DOI: 10.1021/ja2034377

Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System
journal, June 2010

  • Geilen, Frank M. A.; Engendahl, Barthel; Harwardt, Andreas
  • Angewandte Chemie, Vol. 122, Issue 32
  • DOI: 10.1002/ange.201002060

Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions
journal, January 2012

  • Al-Shaal, Mohammad G.; Wright, William R. H.; Palkovits, Regina
  • Green Chemistry, Vol. 14, Issue 5
  • DOI: 10.1039/c2gc16631c

Thermal decomposition of metal carbonyls: A thermogravimetry-mass spectrometry study
journal, April 1984


A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions
journal, January 2015

  • Strappaveccia, Giacomo; Ismalaj, Ermal; Petrucci, Chiara
  • Green Chemistry, Vol. 17, Issue 1
  • DOI: 10.1039/C4GC01677G

Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents
journal, December 1999


Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
journal, January 2013

  • Alonso, David Martin; Wettstein, Stephanie G.; Dumesic, James A.
  • Green Chemistry, Vol. 15, Issue 3
  • DOI: 10.1039/c3gc37065h

Itaconic acid – a versatile building block for renewable polyesters with enhanced functionality
journal, January 2016

  • Robert, Tobias; Friebel, Stefan
  • Green Chemistry, Vol. 18, Issue 10
  • DOI: 10.1039/C6GC00605A

Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs
journal, January 2013

  • Etayo, Pablo; Vidal-Ferran, Anton
  • Chem. Soc. Rev., Vol. 42, Issue 2
  • DOI: 10.1039/C2CS35410A

Catalytic conversion of biomass to biofuels
journal, January 2010

  • Alonso, David Martin; Bond, Jesse Q.; Dumesic, James A.
  • Green Chemistry, Vol. 12, Issue 9, p. 1493-1513
  • DOI: 10.1039/c004654j

Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems
journal, January 2012

  • Wettstein, Stephanie G.; Alonso, David Martin; Chong, Yuxuan
  • Energy & Environmental Science, Vol. 5, Issue 8, p. 8199-8203
  • DOI: 10.1039/c2ee22111j

Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus
journal, July 2009

  • Okabe, Mitsuyasu; Lies, Dwiarti; Kanamasa, Shin
  • Applied Microbiology and Biotechnology, Vol. 84, Issue 4
  • DOI: 10.1007/s00253-009-2132-3

γ-Valerolactone as a Renewable Dipolar Aprotic Solvent Deriving from Biomass Degradation for the Hiyama Reaction
journal, September 2014

  • Ismalaj, Ermal; Strappaveccia, Giacomo; Ballerini, Eleonora
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 10
  • DOI: 10.1021/sc5004727

Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Renewable Sources
journal, February 2015

  • Liguori, Francesca; Moreno-Marrodan, Carmen; Barbaro, Pierluigi
  • ACS Catalysis, Vol. 5, Issue 3
  • DOI: 10.1021/cs501922e

Fuel options: The ideal biofuel
journal, June 2011


Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers
journal, May 2007

  • Ott, Lisa Starkey; Finke, Richard G.
  • Coordination Chemistry Reviews, Vol. 251, Issue 9-10, p. 1075-1100
  • DOI: 10.1016/j.ccr.2006.08.016

Catalytic Conversion of Fructose to γ-Valerolactone in γ-Valerolactone
journal, September 2012

  • Qi, Long; Horváth, István T.
  • ACS Catalysis, Vol. 2, Issue 11
  • DOI: 10.1021/cs300428f

Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply
journal, December 2014


Gamma-valerolactone-based solvents
journal, January 2010

  • Fegyverneki, Dániel; Orha, László; Láng, Győző
  • Tetrahedron, Vol. 66, Issue 5, p. 1078-1081
  • DOI: 10.1016/j.tet.2009.11.013

A step towards hydroformylation under sustainable conditions: platinum-catalysed enantioselective hydroformylation of styrene in gamma-valerolactone
journal, January 2016

  • Pongrácz, Péter; Kollár, László; Mika, László T.
  • Green Chemistry, Vol. 18, Issue 3
  • DOI: 10.1039/C5GC01778E

Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors
journal, January 2008

  • Redel, Engelbert; Thomann, Ralf; Janiak, Christoph
  • Chemical Communications, Issue 15
  • DOI: 10.1039/b718055a

A Versatile Aqueous Reduction of Bio-Based Carboxylic Acids using Syngas as a Hydrogen Source
journal, November 2012


Chromium(0) Nanoparticles as Effective Catalyst for the Conversion of Glucose into 5-Hydroxymethylfurfural
journal, December 2012


Itaconic acid – A biotechnological process in change
journal, May 2013


Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation
journal, January 2012

  • Murat Sen, S.; Henao, Carlos A.; Braden, Drew J.
  • Chemical Engineering Science, Vol. 67, Issue 1
  • DOI: 10.1016/j.ces.2011.07.022

Synthesis of β-methyl-α-methylene-γ-butyrolactone from biorenewable itaconic acid
journal, January 2014

  • Gowda, Ravikumar R.; Chen, Eugene Y. -X.
  • Organic Chemistry Frontiers, Vol. 1, Issue 3
  • DOI: 10.1039/c3qo00089c

A sustainable process for the production of 2-methyl-1,4-butanediol by hydrogenation of biomass-derived itaconic acid
journal, October 2016


Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals
journal, June 2010


New Water-Soluble Iridium(I)–N-Heterocyclic Carbene–Tertiary Phosphine Mixed-Ligand Complexes as Catalysts of Hydrogenation and Redox Isomerization
journal, November 2014

  • Horváth, Henrietta; Kathó, Ágnes; Udvardy, Antal
  • Organometallics, Vol. 33, Issue 22
  • DOI: 10.1021/om5006148

Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H 2 Supply
journal, August 2009


Rhodium-catalyzed hydrogenation of olefins in γ-valerolactone-based ionic liquids
journal, January 2013

  • Strádi, Andrea; Molnár, Márk; Óvári, Mihály
  • Green Chemistry, Vol. 15, Issue 7
  • DOI: 10.1039/c3gc40360b

Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels
journal, February 2010


Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer
journal, September 2004


Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule
journal, January 2015

  • Tukacs, József M.; Fridrich, Bálint; Dibó, Gábor
  • Green Chemistry, Vol. 17, Issue 12
  • DOI: 10.1039/C5GC01099C

Innovations and Green Chemistry
journal, June 2007

  • Horváth, István T.; Anastas, Paul T.
  • Chemical Reviews, Vol. 107, Issue 6
  • DOI: 10.1021/cr078380v

Catalytic transfer hydrogenation in γ-valerolactone-based ionic liquids
journal, January 2015

  • Strádi, Andrea; Molnár, Márk; Szakál, Péter
  • RSC Advances, Vol. 5, Issue 89
  • DOI: 10.1039/C5RA08297H

A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid
journal, January 2012

  • Galletti, Anna Maria Raspolli; Antonetti, Claudia; De Luise, Valentina
  • Green Chemistry, Vol. 14, Issue 3
  • DOI: 10.1039/c2gc15872h

γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction
journal, January 2015

  • Strappaveccia, Giacomo; Luciani, Lorenzo; Bartollini, Elena
  • Green Chemistry, Vol. 17, Issue 2
  • DOI: 10.1039/C4GC01728E

γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals
journal, January 2008

  • Horváth, István T.; Mehdi, Hasan; Fábos, Viktória
  • Green Chem., Vol. 10, Issue 2
  • DOI: 10.1039/B712863K

Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply
journal, August 2009

  • Deng, Li; Li, Jiang; Lai, Da-Ming
  • Angewandte Chemie International Edition, Vol. 48, Issue 35, p. 6529-6532
  • DOI: 10.1002/anie.200902281