skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths

Abstract

The application of colloidal semiconductor quantum dots as single-dot light sources still requires overcoming several challenges. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core into a thick protective shell. However, these nanostructures still show considerable fluctuations in both emission energy and linewidth. Here we demonstrate type-I core/shell heterostructures that overcome these deficiencies. They are made by combining wurtzite semiconductors with a large, directionally anisotropic lattice mismatch, which results in strong asymmetric compression of the emitting core. This modifies the structure of band-edge excitonic states and leads to accelerated radiative decay, reduced exciton-phonon interactions, and suppressed coupling to fluctuating electrostatic environment. As a result, individual asymmetrically strained dots exhibit highly stable emission energy (<1 meV standard deviation) and a subthermal room-temperature linewidth (~20 meV), concurrent with nearly nonblinking behaviour, high emission quantum yields, and a widely tunable emission colour.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ajou Univ., Suwon (Korea, Republic of)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1492545
Alternate Identifier(s):
OSTI ID: 1491837
Report Number(s):
LA-UR-19-20496
Journal ID: ISSN 1476-1122
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 18; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Material Science; quantum dots

Citation Formats

Park, Young -Shin, Lim, Jaehoon, and Klimov, Victor I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. United States: N. p., 2019. Web. doi:10.1038/s41563-018-0254-7.
Park, Young -Shin, Lim, Jaehoon, & Klimov, Victor I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. United States. doi:10.1038/s41563-018-0254-7.
Park, Young -Shin, Lim, Jaehoon, and Klimov, Victor I. Mon . "Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths". United States. doi:10.1038/s41563-018-0254-7. https://www.osti.gov/servlets/purl/1492545.
@article{osti_1492545,
title = {Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths},
author = {Park, Young -Shin and Lim, Jaehoon and Klimov, Victor I.},
abstractNote = {The application of colloidal semiconductor quantum dots as single-dot light sources still requires overcoming several challenges. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core into a thick protective shell. However, these nanostructures still show considerable fluctuations in both emission energy and linewidth. Here we demonstrate type-I core/shell heterostructures that overcome these deficiencies. They are made by combining wurtzite semiconductors with a large, directionally anisotropic lattice mismatch, which results in strong asymmetric compression of the emitting core. This modifies the structure of band-edge excitonic states and leads to accelerated radiative decay, reduced exciton-phonon interactions, and suppressed coupling to fluctuating electrostatic environment. As a result, individual asymmetrically strained dots exhibit highly stable emission energy (<1 meV standard deviation) and a subthermal room-temperature linewidth (~20 meV), concurrent with nearly nonblinking behaviour, high emission quantum yields, and a widely tunable emission colour.},
doi = {10.1038/s41563-018-0254-7},
journal = {Nature Materials},
number = ,
volume = 18,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions
journal, January 2012

  • Greytak, Andrew B.; Allen, Peter M.; Liu, Wenhao
  • Chemical Science, Vol. 3, Issue 6
  • DOI: 10.1039/c2sc00561a

Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking
journal, October 2016


Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots
journal, October 2014

  • Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.
  • Small, Vol. 11, Issue 13
  • DOI: 10.1002/smll.201402264

Full-colour quantum dot displays fabricated by transfer printing
journal, February 2011


Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer
journal, August 1994

  • Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P.
  • Nature, Vol. 370, Issue 6488
  • DOI: 10.1038/370354a0

High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots
journal, May 2015


Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots
journal, October 2000


Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
journal, November 2017

  • Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.
  • Nature Materials, Vol. 17, Issue 1
  • DOI: 10.1038/nmat5011

Tandem luminescent solar concentrators based on engineered quantum dots
journal, January 2018


Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration
journal, August 2015


Solid-state single-photon emitters
journal, September 2016


Semiconductor Quantum Dots in Chemical Sensors and Biosensors
journal, September 2009

  • Frasco, Manuela; Chaniotakis, Nikos
  • Sensors, Vol. 9, Issue 9
  • DOI: 10.3390/s90907266

Quantum dot bioconjugates for imaging, labelling and sensing
journal, June 2005

  • Medintz, Igor L.; Uyeda, H. Tetsuo; Goldman, Ellen R.
  • Nature Materials, Vol. 4, Issue 6, p. 435-446
  • DOI: 10.1038/nmat1390

Semiconductor quantum dots for in vitro diagnostics and cellular imaging
journal, July 2012


Towards non-blinking colloidal quantum dots
journal, June 2008

  • Mahler, Benoit; Spinicelli, Piernicola; Buil, Stéphanie
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2222

“Giant” Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking
journal, April 2008

  • Chen, Yongfen; Vela, Javier; Htoon, Han
  • Journal of the American Chemical Society, Vol. 130, Issue 15
  • DOI: 10.1021/ja711379k

Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
journal, February 2013

  • Chen, Ou; Zhao, Jing; Chauhan, Vikash P.
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3539

Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements
journal, December 2013

  • Qin, Haiyan; Niu, Yuan; Meng, Renyang
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja4078528

Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance
journal, October 2009

  • García-Santamaría, Florencio; Chen, Yongfen; Vela, Javier
  • Nano Letters, Vol. 9, Issue 10
  • DOI: 10.1021/nl901681d

Fluorescence intermittency in single cadmium selenide nanocrystals
journal, October 1996

  • Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.
  • Nature, Vol. 383, Issue 6603
  • DOI: 10.1038/383802a0

“On”/“off” fluorescence intermittency of single semiconductor quantum dots
journal, July 2001

  • Kuno, M.; Fromm, D. P.; Hamann, H. F.
  • The Journal of Chemical Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.1377883

Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot
journal, February 1997


Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals
journal, April 2011

  • Brovelli, S.; Schaller, R. D.; Crooker, S. A.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1281

Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe
journal, October 1994


(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites
journal, November 1997

  • Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 46, p. 9463-9475
  • DOI: 10.1021/jp971091y

High-Pressure Structural Transformations in Semiconductor Nanocrystals
journal, October 1995


Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy
journal, March 2017

  • Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P.
  • Nature, Vol. 544, Issue 7648
  • DOI: 10.1038/nature21424

Size dependence of exciton fine structure in CdSe quantum dots
journal, June 1996


Electronic structure and band parameters for Zn (, S, Se, Te)
journal, January 2006


Compressive strain induced heavy hole and light hole splitting of Zn1−xCdxSe epilayers grown by molecular beam epitaxy
journal, February 2003


Strain-induced heavy-hole-to-light-hole energy splitting in (111) B pseudomorphic In y Ga 1 y As quantum wells
journal, March 1993


Electronic structure and optical properties of [(ZnSe ) m (CdSe ) n ] N -ZnSe multiple quantum wells
journal, November 1994


Bright and Grey States in CdSe-CdS Nanocrystals Exhibiting Strongly Reduced Blinking
journal, March 2009


Spectroscopy of single nanocrystals
journal, January 2014

  • Fernée, Mark J.; Tamarat, Philippe; Lounis, Brahim
  • Chemical Society Reviews, Vol. 43, Issue 4
  • DOI: 10.1039/c3cs60209e

Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime
journal, April 2003

  • Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.
  • Applied Physics Letters, Vol. 82, Issue 17
  • DOI: 10.1063/1.1570923

Photogenerated Excitons in Plain Core CdSe Nanocrystals with Unity Radiative Decay in Single Channel: The Effects of Surface and Ligands
journal, March 2015

  • Gao, Yuan; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b01314

Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots
journal, October 1996


Spontaneous Spectral Diffusion in CdSe Quantum Dots
journal, June 2012

  • Fernée, Mark J.; Plakhotnik, Taras; Louyer, Yann
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 12
  • DOI: 10.1021/jz300456h

Electron−Phonon Coupling in CdSe Nanocrystals
journal, April 2010

  • Kelley, Anne Myers
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 9
  • DOI: 10.1021/jz100123b

Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals
journal, November 1993


Suppression of Auger Processes in Confined Structures
journal, January 2010

  • Cragg, George E.; Efros, Alexander L.
  • Nano Letters, Vol. 10, Issue 1
  • DOI: 10.1021/nl903592h

Spectroscopy of Colloidal Semiconductor Core/Shell Nanoplatelets with High Quantum Yield
journal, June 2013

  • Tessier, M. D.; Mahler, B.; Nadal, B.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401538n

Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure
journal, January 2016

  • Rainò, Gabriele; Nedelcu, Georgian; Protesescu, Loredana
  • ACS Nano, Vol. 10, Issue 2
  • DOI: 10.1021/acsnano.5b07328

Room‐temperature exciton luminescence in II‐VI quantum wells
journal, June 1991

  • Stanley, R. P.; Hawdon, B. J.; Hegarty, J.
  • Applied Physics Letters, Vol. 58, Issue 25
  • DOI: 10.1063/1.104712

Observation of free excitons in room‐temperature photoluminescence of GaAs/AlGaAs single quantum wells
journal, August 1988

  • Fujiwara, K.; Tsukada, N.; Nakayama, T.
  • Applied Physics Letters, Vol. 53, Issue 8
  • DOI: 10.1063/1.99847

Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals
journal, January 1996

  • Hines, Margaret A.; Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry, Vol. 100, Issue 2, p. 468-471
  • DOI: 10.1021/jp9530562

Raman-scattering study of exciton-phonon coupling in PbS nanocrystals
journal, April 1997


Electron–Phonon Coupling in CdSe Nanocrystals from an Atomistic Phonon Model
journal, May 2011


Theory of the linear and nonlinear optical properties of semiconductor microcrystallites
journal, May 1987