DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-heme High-Spin {FeNO}6–8 Complexes: One Ligand Platform Can Do It All

Abstract

Heme and non-heme iron-nitrosyl complexes are important intermediates in biology. While there are numerous examples of low-spin heme iron-nitrosyl complexes in different oxidation states, much less is known about high-spin (hs) non-heme iron-nitrosyls in oxidation states other than the formally ferrous NO adducts ({FeNO}7 in the Enemark-Feltham notation). In this study, we present a complete series of hs-{Fe-NO}6-8 complexes using the TMG3tren coligand. Redox transformations from the hs-{FeNO}7 complex [Fe(TMG3tren)(NO)]2+ to its {FeNO}6 and {FeNO}8 analogs do not alter the coordination environment of the iron center, allowing for detailed comparisons between these species. Here, we present new MCD, NRVS, XANES/EXAFS and Mössbauer data, demonstrating that these redox transformations are metal based, which allows us to access hs-Fe(II)-NO¯, Fe(III)-NO¯ and Fe(IV)-NO¯ complexes. Vibrational data, analyzed by NCA, directly quantify changes in Fe-NO bonding along this series. Optical data allow for the identification of a “spectator” charge-transfer transition that, together with Mössbauer and XAS data, directly monitors electronic changes of the Fe center. Using EXAFS, we are also now able to provide structural data for all complexes. The magnetic properties of the complexes are further analyzed (from magnetic Mössbauer). The properties of our hs-{FeNO}6-8 complexes are then contrasted to corresponding, low-spin iron-nitrosylmore » complexes, where redox transformations are generally NO-centered. The hs-{FeNO}8 complex can further be protonated by weak acids, and the product of this reaction is characterized. Altogether, these results provide unprecedented insight into the properties of biologically relevant non-heme iron-nitrosyl complexes in three relevant oxidation states.« less

Authors:
 [1];  [1];  [2];  [3];  [3];  [3]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. The Pennsylvania State Univ., University Park, PA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1489682
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 36; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Speelman, Amy L., White, Corey J., Zhang, Bo, Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, Penner-Hahn, James, and Lehnert, Nicolai. Non-heme High-Spin {FeNO}6–8 Complexes: One Ligand Platform Can Do It All. United States: N. p., 2018. Web. doi:10.1021/jacs.8b06095.
Speelman, Amy L., White, Corey J., Zhang, Bo, Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, Penner-Hahn, James, & Lehnert, Nicolai. Non-heme High-Spin {FeNO}6–8 Complexes: One Ligand Platform Can Do It All. United States. https://doi.org/10.1021/jacs.8b06095
Speelman, Amy L., White, Corey J., Zhang, Bo, Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, Penner-Hahn, James, and Lehnert, Nicolai. Tue . "Non-heme High-Spin {FeNO}6–8 Complexes: One Ligand Platform Can Do It All". United States. https://doi.org/10.1021/jacs.8b06095. https://www.osti.gov/servlets/purl/1489682.
@article{osti_1489682,
title = {Non-heme High-Spin {FeNO}6–8 Complexes: One Ligand Platform Can Do It All},
author = {Speelman, Amy L. and White, Corey J. and Zhang, Bo and Alp, E. Ercan and Zhao, Jiyong and Hu, Michael and Krebs, Carsten and Penner-Hahn, James and Lehnert, Nicolai},
abstractNote = {Heme and non-heme iron-nitrosyl complexes are important intermediates in biology. While there are numerous examples of low-spin heme iron-nitrosyl complexes in different oxidation states, much less is known about high-spin (hs) non-heme iron-nitrosyls in oxidation states other than the formally ferrous NO adducts ({FeNO}7 in the Enemark-Feltham notation). In this study, we present a complete series of hs-{Fe-NO}6-8 complexes using the TMG3tren coligand. Redox transformations from the hs-{FeNO}7 complex [Fe(TMG3tren)(NO)]2+ to its {FeNO}6 and {FeNO}8 analogs do not alter the coordination environment of the iron center, allowing for detailed comparisons between these species. Here, we present new MCD, NRVS, XANES/EXAFS and Mössbauer data, demonstrating that these redox transformations are metal based, which allows us to access hs-Fe(II)-NO¯, Fe(III)-NO¯ and Fe(IV)-NO¯ complexes. Vibrational data, analyzed by NCA, directly quantify changes in Fe-NO bonding along this series. Optical data allow for the identification of a “spectator” charge-transfer transition that, together with Mössbauer and XAS data, directly monitors electronic changes of the Fe center. Using EXAFS, we are also now able to provide structural data for all complexes. The magnetic properties of the complexes are further analyzed (from magnetic Mössbauer). The properties of our hs-{FeNO}6-8 complexes are then contrasted to corresponding, low-spin iron-nitrosyl complexes, where redox transformations are generally NO-centered. The hs-{FeNO}8 complex can further be protonated by weak acids, and the product of this reaction is characterized. Altogether, these results provide unprecedented insight into the properties of biologically relevant non-heme iron-nitrosyl complexes in three relevant oxidation states.},
doi = {10.1021/jacs.8b06095},
journal = {Journal of the American Chemical Society},
number = 36,
volume = 140,
place = {United States},
year = {Tue Aug 14 00:00:00 EDT 2018},
month = {Tue Aug 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nitric oxide: first in a new class of neurotransmitters
journal, July 1992


NO news is good news
journal, December 1992


The chemistry of nitroxyl (HNO) and implications in biology
journal, February 2005


The Chemistry and Biology of Nitroxyl (HNO): A Chemically Unique Species with Novel and Important Biological Activity
journal, December 2004

  • Fukuto, Jon M.; Dutton, Andrew S.; Houk, Kendall N.
  • ChemBioChem, Vol. 6, Issue 4
  • DOI: 10.1002/cbic.200400271

A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO)
journal, January 2013


Nitrosyl Hydride (HNO) as an O 2 Analogue: Long-Lived HNO Adducts of Ferrous Globins
journal, May 2009

  • Kumar, Murugaeson R.; Pervitsky, Dmitry; Chen, Lan
  • Biochemistry, Vol. 48, Issue 22
  • DOI: 10.1021/bi900122r

Reactions of HNO with Metal Porphyrins: Underscoring the Biological Relevance of HNO
journal, September 2014

  • Doctorovich, Fabio; Bikiel, Damian E.; Pellegrino, Juan
  • Accounts of Chemical Research, Vol. 47, Issue 10
  • DOI: 10.1021/ar500153c

Nitroxyl (azanone) trapping by metalloporphyrins
journal, December 2011

  • Doctorovich, Fabio; Bikiel, Damian; Pellegrino, Juan
  • Coordination Chemistry Reviews, Vol. 255, Issue 23-24
  • DOI: 10.1016/j.ccr.2011.04.012

The Specificity of Nitroxyl Chemistry Is Unique Among Nitrogen Oxides in Biological Systems
journal, May 2011

  • Flores-Santana, Wilmarie; Salmon, Debra J.; Donzelli, Sonia
  • Antioxidants & Redox Signaling, Vol. 14, Issue 9
  • DOI: 10.1089/ars.2010.3841

The reduction potential of nitric oxide (NO) and its importance to NO biochemistry
journal, August 2002

  • Bartberger, M. D.; Liu, W.; Ford, E.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 17
  • DOI: 10.1073/pnas.162095599

H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway
journal, July 2014

  • Eberhardt, Mirjam; Dux, Maria; Namer, Barbara
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5381

Key bioactive reaction products of the NO/H 2 S interaction are S/N-hybrid species, polysulfides, and nitroxyl
journal, July 2015

  • Cortese-Krott, Miriam M.; Kuhnle, Gunter G. C.; Dyson, Alex
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 34
  • DOI: 10.1073/pnas.1509277112

HNO Is Produced by the Reaction of NO with Thiols
journal, October 2017

  • Suarez, Sebastian A.; Muñoz, Martina; Alvarez, Lucia
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b06968

Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media?
journal, April 2015

  • Suarez, Sebastián A.; Neuman, Nicolás I.; Muñoz, Martina
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja512343w

Discussing Endogenous NO /HNO Interconversion Aided by Phenolic Drugs and Vitamins
journal, August 2015


Structure-Function Aspects in the Nitric Oxide Synthases
journal, April 1997


Nitric-oxide synthase: A cytochrome P450 family foster child
journal, March 2007

  • Gorren, Antonius C. F.; Mayer, Bernd
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1770, Issue 3
  • DOI: 10.1016/j.bbagen.2006.08.019

Nitric Oxide in Biological Denitrification:  Fe/Cu Metalloenzyme and Metal Complex NO x Redox Chemistry
journal, April 2002

  • Wasser, Ian M.; de Vries, Simon; Moënne-Loccoz, Pierre
  • Chemical Reviews, Vol. 102, Issue 4
  • DOI: 10.1021/cr0006627

The New Chemical Biology of Nitrite Reactions with Hemoglobin: R-State Catalysis, Oxidative Denitrosylation, and Nitrite Reductase/Anhydrase
journal, January 2009

  • Gladwin, Mark T.; Grubina, Rozalina; Doyle, Michael P.
  • Accounts of Chemical Research, Vol. 42, Issue 1
  • DOI: 10.1021/ar800089j

Heme-Nitrosyls: Electronic Structure Implications for Function in Biology
journal, June 2015


Molecular structure and function of bacterial nitric oxide reductase
journal, April 2012

  • Hino, Tomoya; Nagano, Shingo; Sugimoto, Hiroshi
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1817, Issue 4
  • DOI: 10.1016/j.bbabio.2011.09.021

Model complexes of key intermediates in fungal cytochrome P450 nitric oxide reductase (P450nor)
journal, April 2014

  • McQuarters, Ashley B.; Wirgau, Nathaniel E.; Lehnert, Nicolai
  • Current Opinion in Chemical Biology, Vol. 19
  • DOI: 10.1016/j.cbpa.2014.01.017

How Biology Handles Nitrite
journal, April 2014

  • Maia, Luisa B.; Moura, José J. G.
  • Chemical Reviews, Vol. 114, Issue 10
  • DOI: 10.1021/cr400518y

Principles of structure, bonding, and reactivity for metal nitrosyl complexes
journal, September 1974


Mechanistic Aspects of the Reactions of Nitric Oxide with Transition-Metal Complexes
journal, April 2002

  • Ford, Peter C.; Lorkovic, Ivan M.
  • Chemical Reviews, Vol. 102, Issue 4
  • DOI: 10.1021/cr0000271

Solid-State Structures of Metalloporphyrin NO x Compounds
journal, April 2002

  • Wyllie, Graeme R. A.; Scheidt, W. Robert
  • Chemical Reviews, Vol. 102, Issue 4
  • DOI: 10.1021/cr000080p

NO and O2 reactivities of synthetic functional models of nitric oxide reductase and cytochrome c oxidase
journal, January 2011

  • Ghosh Dey, Somdatta; Dey, Abhishek
  • Dalton Transactions, Vol. 40, Issue 47
  • DOI: 10.1039/c1dt10451a

Mechanisms of Reductive Nitrosylation in Iron and Copper Models Relevant to Biological Systems
journal, June 2005

  • Ford, Peter C.; Fernandez, Bernadette O.; Lim, Mark D.
  • Chemical Reviews, Vol. 105, Issue 6
  • DOI: 10.1021/cr0307289

Reactions of NO and Nitrite with Heme Models and Proteins
journal, July 2010


Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric Oxide Reactivity, Sensing, Transport, and Toxicity in Biological Systems
journal, July 2010

  • Goodrich, Lauren E.; Paulat, Florian; Praneeth, V. K. K.
  • Inorganic Chemistry, Vol. 49, Issue 14
  • DOI: 10.1021/ic902304a

Linkage Isomerization in Heme−NOx Compounds: Understanding NO, Nitrite, and Hyponitrite Interactions with Iron Porphyrins
journal, July 2010

  • Xu, Nan; Yi, Jun; Richter-Addo, George B.
  • Inorganic Chemistry, Vol. 49, Issue 14
  • DOI: 10.1021/ic902423v

Mechanistic Studies on the Activation of NO by Iron and Cobalt Complexes
journal, February 2007

  • Franke, Alicja; Roncaroli, Federico; van Eldik, Rudi
  • European Journal of Inorganic Chemistry, Vol. 2007, Issue 6
  • DOI: 10.1002/ejic.200600921

Factors That Determine the Mechanism of NO Activation by Metal Complexes of Biological and Environmental Relevance
journal, December 2012

  • Franke, Alicja; van Eldik, Rudi
  • European Journal of Inorganic Chemistry, Vol. 2013, Issue 4
  • DOI: 10.1002/ejic.201201111

Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities
journal, September 2016

  • Bhagi-Damodaran, Ambika; Petrik, Igor; Lu, Yi
  • Israel Journal of Chemistry, Vol. 56, Issue 9-10
  • DOI: 10.1002/ijch.201600033

Heme versus Non-Heme Iron-Nitroxyl {FeN(H)O} 8 Complexes: Electronic Structure and Biologically Relevant Reactivity
journal, February 2014

  • Speelman, Amy L.; Lehnert, Nicolai
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400256u

One Electron Makes Differences: From Heme {FeNO} 7 to {FeNO} 8
journal, July 2015

  • Hu, Bin; Li, Jianfeng
  • Angewandte Chemie International Edition, Vol. 54, Issue 36
  • DOI: 10.1002/anie.201505166

X-ray Structure and Properties of the Ferrous Octaethylporphyrin Nitroxyl Complex
journal, February 2016


Reactions of HNO with Heme Proteins: New Routes to HNO−Heme Complexes and Insight into Physiological Effects
journal, July 2010

  • Kumar, Murugaeson R.; Fukuto, Jon M.; Miranda, Katrina M.
  • Inorganic Chemistry, Vol. 49, Issue 14
  • DOI: 10.1021/ic902319d

The HNO Adduct of Myoglobin:  Synthesis and Characterization
journal, March 2000

  • Lin, Rong; Farmer, Patrick J.
  • Journal of the American Chemical Society, Vol. 122, Issue 10
  • DOI: 10.1021/ja994079n

Three Redox States of Nitrosyl: NO + , NO . , and NO /HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform
journal, May 2009

  • Montenegro, Andrea C.; Amorebieta, Valentín T.; Slep, Leonardo D.
  • Angewandte Chemie International Edition, Vol. 48, Issue 23
  • DOI: 10.1002/anie.200806229

Electronic Structure and Biologically Relevant Reactivity of Low-Spin {FeNO} 8 Porphyrin Model Complexes: New Insight from a Bis-Picket Fence Porphyrin
journal, June 2013

  • Goodrich, Lauren E.; Roy, Saikat; Alp, E. Ercan
  • Inorganic Chemistry, Vol. 52, Issue 13
  • DOI: 10.1021/ic400977h

Redox and Spectroscopic Properties of Iron Porphyrin Nitroxyl in the Presence of Weak Acids
journal, March 2017


Hydride Attack on a Coordinated Ferric Nitrosyl: Experimental and DFT Evidence for the Formation of a Heme Model–HNO Derivative
journal, December 2015

  • Abucayon, Erwin G.; Khade, Rahul L.; Powell, Douglas R.
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b12008

Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes
journal, January 2000

  • Solomon, Edward I.; Brunold, Thomas C.; Davis, Mindy I.
  • Chemical Reviews, Vol. 100, Issue 1
  • DOI: 10.1021/cr9900275

Spectroscopic and Theoretical Description of the Electronic Structure of S = 3/2 Iron-Nitrosyl Complexes and Their Relation to O2 Activation by Non-Heme Iron Enzyme Active Sites
journal, January 1995

  • Brown, Carl A.; Pavlosky, Mark A.; Westre, Tami E.
  • Journal of the American Chemical Society, Vol. 117, Issue 2
  • DOI: 10.1021/ja00107a015

Mono- and dinuclear non-heme iron–nitrosyl complexes: Models for key intermediates in bacterial nitric oxide reductases
journal, January 2013

  • Berto, Timothy C.; Speelman, Amy L.; Zheng, Sheng
  • Coordination Chemistry Reviews, Vol. 257, Issue 1
  • DOI: 10.1016/j.ccr.2012.05.007

Structural and Electronic Characterization of Non-Heme Fe(II)–Nitrosyls as Biomimetic Models of the Fe B Center of Bacterial Nitric Oxide Reductase
journal, October 2011

  • Berto, Timothy C.; Hoffman, Melissa B.; Murata, Yuki
  • Journal of the American Chemical Society, Vol. 133, Issue 42
  • DOI: 10.1021/ja111693f

Structural basis for nitrous oxide generation by bacterial nitric oxide reductases
journal, May 2012

  • Shiro, Yoshitsugu; Sugimoto, Hiroshi; Tosha, Takehiko
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 367, Issue 1593
  • DOI: 10.1098/rstb.2011.0310

Flavo-diiron enzymes: nitric oxide or dioxygen reductases?
journal, January 2007


The Active Site of the Bacterial Nitric Oxide Reductase Is a Dinuclear Iron Center
journal, September 1998

  • Hendriks, Janneke; Warne, Antony; Gohlke, Ulrich
  • Biochemistry, Vol. 37, Issue 38
  • DOI: 10.1021/bi980943x

Insights into the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins from a Flavin-Free Enzyme
journal, August 2010

  • Hayashi, Takahiro; Caranto, Jonathan D.; Wampler, David A.
  • Biochemistry, Vol. 49, Issue 33
  • DOI: 10.1021/bi100788y

The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products
journal, May 2014

  • Caranto, Jonathan D.; Weitz, Andrew; Hendrich, Michael P.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5022443

A Diferrous-Dinitrosyl Intermediate in the N 2 O-Generating Pathway of a Deflavinated Flavo-Diiron Protein
journal, August 2014

  • Caranto, Jonathan D.; Weitz, Andrew; Giri, Nitai
  • Biochemistry, Vol. 53, Issue 35
  • DOI: 10.1021/bi500836z

The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases
journal, February 2018

  • White, Corey J.; Speelman, Amy L.; Kupper, Claudia
  • Journal of the American Chemical Society, Vol. 140, Issue 7
  • DOI: 10.1021/jacs.7b11464

Functional Mononitrosyl Diiron(II) Complex Mediates the Reduction of NO to N 2 O with Relevance for Flavodiiron NO Reductases
journal, September 2017

  • Jana, Manish; Pal, Nabhendu; White, Corey J.
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b08855

A Nonheme, High-Spin {FeNO} 8 Complex that Spontaneously Generates N 2 O
journal, July 2017

  • Confer, Alex M.; McQuilken, Alison C.; Matsumura, Hirotoshi
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b05549

Chemistry of Nitrosyliron Complexes Supported by a β-Diketiminate Ligand
journal, February 2011

  • Tonzetich, Zachary J.; Héroguel, Florent; Do, Loi H.
  • Inorganic Chemistry, Vol. 50, Issue 4
  • DOI: 10.1021/ic102300d

Reductive Transformations of a Pyrazolate-Based Bioinspired Diiron–Dinitrosyl Complex
journal, October 2016


Cryoreduction of the NO-Adduct of Taurine:α-Ketoglutarate Dioxygenase (TauD) Yields an Elusive {FeNO} 8 Species
journal, March 2010

  • Ye, Shengfa; Price, John C.; Barr, Eric W.
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja909715g

Characterization of a High-Spin Non-Heme {FeNO} 8 Complex: Implications for the Reactivity of Iron Nitroxyl Species in Biology
journal, October 2013

  • Speelman, Amy L.; Lehnert, Nicolai
  • Angewandte Chemie International Edition, Vol. 52, Issue 47
  • DOI: 10.1002/anie.201305291

Flavorubredoxin, an Inducible Catalyst for Nitric Oxide Reduction and Detoxification in Escherichia coli
journal, March 2002

  • Gardner, Anne M.; Helmick, Ryan A.; Gardner, Paul R.
  • Journal of Biological Chemistry, Vol. 277, Issue 10
  • DOI: 10.1074/jbc.M110471200

Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator
journal, May 2000

  • Ding, H.; Demple, B.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 10
  • DOI: 10.1073/pnas.97.10.5146

A non-haem iron centre in the transcription factor NorR senses nitric oxide
journal, September 2005

  • D'Autréaux, Benoît; Tucker, Nicholas P.; Dixon, Ray
  • Nature, Vol. 437, Issue 7059
  • DOI: 10.1038/nature03953

Structural and Spectroscopic Characterization of a High-Spin {FeNO} 6 Complex with an Iron(IV)−NO Electronic Structure
journal, April 2016

  • Speelman, Amy L.; Zhang, Bo; Krebs, Carsten
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601742

Structural, Spectroscopic, and Computational Study of an Octahedral, Non-Heme {Fe−NO}6-8 Series:  [Fe(NO)(cyclam-ac)]2+/+/0
journal, April 2004

  • Serres, Ricardo García; Grapperhaus, Craig A.; Bothe, Eberhard
  • Journal of the American Chemical Society, Vol. 126, Issue 16
  • DOI: 10.1021/ja030645+

The Functional Model Complex [Fe 2 (BPMP)(OPr)(NO) 2 ](BPh 4 ) 2 Provides Insight into the Mechanism of Flavodiiron NO Reductases
journal, March 2013

  • Zheng, Sheng; Berto, Timothy C.; Dahl, Eric W.
  • Journal of the American Chemical Society, Vol. 135, Issue 13
  • DOI: 10.1021/ja309782m

Structure and Magnetic Properties of Trigonal Bipyramidal Iron Nitrosyl Complexes
journal, June 1999

  • Ray, Manabendra; Golombek, Adina P.; Hendrich, Michael P.
  • Inorganic Chemistry, Vol. 38, Issue 13
  • DOI: 10.1021/ic990070a

A Synthetic High-Spin Oxoiron(IV) Complex: Generation, Spectroscopic Characterization, and Reactivity
journal, May 2009

  • England, Jason; Martinho, Marlène; Farquhar, Erik R.
  • Angewandte Chemie International Edition, Vol. 48, Issue 20
  • DOI: 10.1002/anie.200900863

Nuclear resonant spectroscopy
journal, January 2004


Nuclear resonance vibrational spectroscopy ? NRVS
journal, January 2005


Recent advances in bioinorganic spectroscopy
journal, April 2001

  • Lehnert, Nicolai; George, Serena DeBeer; Solomon, Edward I.
  • Current Opinion in Chemical Biology, Vol. 5, Issue 2
  • DOI: 10.1016/S1367-5931(00)00188-5

Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes
journal, October 1995


Detailed Assignment of the Magnetic Circular Dichroism and UV−vis Spectra of Five-Coordinate High-Spin Ferric [Fe(TPP)(Cl)]
journal, June 2008

  • Paulat, Florian; Lehnert, Nicolai
  • Inorganic Chemistry, Vol. 47, Issue 11
  • DOI: 10.1021/ic8002838

Spectroscopic and Computational Study of a Non-Heme Iron {Fe−NO} 7 System:  Exploring the Geometric and Electronic Structures of the Nitrosyl Adduct of Iron Superoxide Dismutase
journal, July 2003

  • Jackson, Timothy A.; Yikilmaz, Emine; Miller, Anne-Frances
  • Journal of the American Chemical Society, Vol. 125, Issue 27
  • DOI: 10.1021/ja029523s

Activation of α-Keto Acid-Dependent Dioxygenases: Application of an {FeNO} 7 /{FeO 2 } 8 Methodology for Characterizing the Initial Steps of O 2 Activation
journal, November 2011

  • Diebold, Adrienne R.; Brown-Marshall, Christina D.; Neidig, Michael L.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja202549q

 -Frontier molecular orbitals in S = 2 ferryl species and elucidation of their contributions to reactivity
journal, August 2012

  • Srnec, M.; Wong, S. D.; England, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 36
  • DOI: 10.1073/pnas.1212693109

Electrochemical and spectroscopic studies of iron porphyrin nitrosyls and their reduction products
journal, April 1991

  • Choi, In Kyu; Liu, Yanming; Feng, DiWei
  • Inorganic Chemistry, Vol. 30, Issue 8
  • DOI: 10.1021/ic00008a028

Successful Stabilization of the Elusive Species {FeNO} 8 in a Heme Model
journal, December 2009

  • Pellegrino, Juan; Bari, Sara E.; Bikiel, Damián E.
  • Journal of the American Chemical Society, Vol. 132, Issue 3
  • DOI: 10.1021/ja905062w

Synthesis and solid-state molecular structures of nitrosoalkane complexes of iron porphyrins containing methanol, pyridine, and 1-methylimidazole ligands
journal, July 2004


Coordination chemistry of the HNO ligand with hemes and synthetic coordination complexes
journal, January 2005


Electronic Structure and FeNO Conformation of Nonheme Iron−Thiolate−NO Complexes:  An Experimental and DFT Study
journal, August 2007

  • Conradie, Jeanet; Quarless,, Duncan A.; Hsu, Hua-Fen
  • Journal of the American Chemical Society, Vol. 129, Issue 34
  • DOI: 10.1021/ja0719982

Synthesis and Structure of a Trigonal Monopyramidal Fe(II) Complex and Its Paramagnetic Carbon Monoxide Derivative
journal, January 1996

  • Ray, Manabendra; Golombek, Adina P.; Hendrich, Michael P.
  • Journal of the American Chemical Society, Vol. 118, Issue 25
  • DOI: 10.1021/ja960036k

Nickel(II) Thiolate Complex with Carbon Monoxide and Its Fe(II) Analog:  Synthetic Models for CO Adducts of Nickel−Iron-Containing Enzymes
journal, January 1996

  • Nguyen, Dao Hinh; Hsu, Hua-Fen; Millar, Michelle
  • Journal of the American Chemical Society, Vol. 118, Issue 37
  • DOI: 10.1021/ja961968r

Binding of Nitric Oxide to a Synthetic Model of Iron-Containing Nitrile Hydratase (Fe-NHase) and Its Photorelease: Relevance to Photoregulation of Fe-NHase by NO
journal, January 2010

  • Rose, Michael J.; Betterley, Nolan M.; Oliver, Allen G.
  • Inorganic Chemistry, Vol. 49, Issue 4
  • DOI: 10.1021/ic902220a

Reversible binding of nitric oxide to an Fe(iii) complex of a tetra-amido macrocycle
journal, January 2012

  • Pluth, Michael D.; Lippard, Stephen J.
  • Chemical Communications, Vol. 48, Issue 98
  • DOI: 10.1039/c2cc37221e

Spectroscopic Properties and Electronic Structure of Five- and Six-Coordinate Iron(II) Porphyrin NO Complexes:  Effect of the Axial N-Donor Ligand
journal, April 2006

  • Praneeth, V. K. K.; Näther, Christian; Peters, Gerhard
  • Inorganic Chemistry, Vol. 45, Issue 7
  • DOI: 10.1021/ic050865j

Electronic Structure of Six-Coordinate Iron(III)−Porphyrin NO Adducts: The Elusive Iron(III)−NO(radical) State and Its Influence on the Properties of These Complexes
journal, November 2008

  • Praneeth, V. K. K.; Paulat, Florian; Berto, Timothy C.
  • Journal of the American Chemical Society, Vol. 130, Issue 46
  • DOI: 10.1021/ja801860u

A thermally stable {FeNO} 8 complex: properties and biological reactivity of reduced MNO systems
journal, January 2012

  • Patra, Ashis K.; Dube, Koustubh S.; Sanders, Brian C.
  • Chem. Sci., Vol. 3, Issue 2
  • DOI: 10.1039/C1SC00582K

Infrared Spectroelectrochemical Reduction of Iron Porphyrin Complexes
journal, July 2010

  • Wei, Zhongcheng; Ryan, Michael D.
  • Inorganic Chemistry, Vol. 49, Issue 15
  • DOI: 10.1021/ic100614h

Electronic origin of variable denitrosylation kinetics from isostructural {FeNO}7 complexes: X-ray crystal structure of [Fe(oetap)(NO)]
journal, January 1997

  • Scott Bohle, D.; Debrunner, Peter; Fitzgerald, Jeffrey P.
  • Chemical Communications, Issue 1
  • DOI: 10.1039/a606880d

In situ FTIR and UV-visible spectroelectrochemical studies of iron nitrosyl porphyrins in nonaqueous media
journal, December 1988


Structural and Electronic Characterization of Nitrosyl(Octaethylporphinato)iron(III) Perchlorate Derivatives
journal, October 2000

  • Ellison, Mary K.; Schulz, Charles E.; Scheidt, W. Robert
  • Inorganic Chemistry, Vol. 39, Issue 22
  • DOI: 10.1021/ic000789e

Comprehensive Fe–Ligand Vibration Identification in {FeNO} 6 Hemes
journal, December 2014

  • Li, Jianfeng; Peng, Qian; Oliver, Allen G.
  • Journal of the American Chemical Society, Vol. 136, Issue 52
  • DOI: 10.1021/ja5105766

Ferric Heme-Nitrosyl Complexes: Kinetically Robust or Unstable Intermediates?
journal, August 2017


Complete Series of {FeNO} 8 , {FeNO} 7 , and {FeNO} 6 Complexes Stabilized by a Tetracarbene Macrocycle
journal, June 2016

  • Kupper, Claudia; Rees, Julian A.; Dechert, Sebastian
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b00584

An Exclusively Organometallic {FeNO} 7 Complex with Tetracarbene Ligation and a Linear FeNO Unit
journal, March 2015


A Triad of Highly Reduced, Linear Iron Nitrosyl Complexes: {FeNO} 8-10
journal, August 2016

  • Chalkley, Matthew J.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 55, Issue 39
  • DOI: 10.1002/anie.201605403

Synthesis, properties, and reactivity of a series of non-heme {FeNO}7/8 complexes: Implications for Fe-nitroxyl coordination
journal, January 2013


Dissimilatory Nitrite and Nitric Oxide Reductases
journal, January 1996


NO and NO interactions with group 8 metalloporphyrins
journal, January 2005


Electronic structure of iron(II)-porphyrin nitroxyl complexes: Molecular mechanism of fungal nitric oxide reductase (P450nor)
journal, September 2006

  • Lehnert, Nicolai; Praneeth, V. K. K.; Paulat, Florian
  • Journal of Computational Chemistry, Vol. 27, Issue 12
  • DOI: 10.1002/jcc.20400

Works referencing / citing this record:

The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non-Heme Iron-NO Chemistry
journal, October 2019

  • Dong, Hai T.; Speelman, Amy L.; Kozemchak, Claire E.
  • Angewandte Chemie International Edition, Vol. 58, Issue 49
  • DOI: 10.1002/anie.201911968

An efficient, step-economical strategy for the design of functional metalloproteins
journal, February 2019


The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry
journal, October 2019

  • Dong, Hai T.; Speelman, Amy L.; Kozemchak, Claire E.
  • Angewandte Chemie, Vol. 131, Issue 49
  • DOI: 10.1002/ange.201911968

Synthesis, structure and reactivity of NO + , NO˙ and NO pincer PCN-Rh complexes
journal, January 2020

  • Gallego, Cecilia Mariel; Gaviglio, Carina; Ben-David, Yehoshoa
  • Dalton Transactions
  • DOI: 10.1039/d0dt00962h