skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Periodic chiral magnetic domains in single-crystal nickel nanowires

Abstract

We report here on experimental and computational investigations of the domain structure of single-crystal Ni nanowires (NWs). The $${\sim}200\times{}200\times{}8000\mathrm{n}{\mathrm{m}}^{3}$$ Ni NWs were grown by a thermal chemical vapor deposition technique that results in single-crystal structures. Magnetoresistance measurements of individual NWs suggest the average magnetization points largely off the NW long axis at zero field. X-ray photoemission electron microscopy images obtained at room temperature show a well-defined periodic magnetization pattern along the surface of the nanowires with a period of $${{\lambda}}_{\mathrm{avg}}=239\pm{}37\mathrm{nm}$$. Finite element micromagnetic simulations reveal that when the material parameters of the modeled system match those of nickel crystal at $$T=10\mathrm{K}$$, an oscillatory magnetization configuration with a period closely matching experimental observation ($${\lambda}=222\mathrm{nm}$$) is obtainable at remanence. This magnetization configuration involves a periodic array of alternating chirality vortex domains distributed along the length of the NW. Vortex formation is attributable to the relatively high cubic anisotropy of the single crystal Ni NW system at $$T=10\mathrm{K}$$ and its reduced structural dimensions. The periodic alternating chirality vortex state is a topologically protected metastable state, analogous to an array of 360° domain walls in a thin strip. Simulations show that other remanent states are also possible, depending on the field history. At room temperature ($$T=273\mathrm{K}$$), simulations show vortices are no longer stable due to the expected reduced cubic anisotropy of the system, suggesting a disparity between the fabricated and modeled nanowires. Negative uniaxial anisotropy and magnetoelastic effects in the presence of compressive biaxial strain are shown to promote and restore formation of vortices at room temperature.

Authors:
 [1];  [2];  [1];  [3];  [4];  [1];  [1]
  1. Univ. of California, San Diego, CA (United States). Center for Memory and Recording Research
  2. Univ. of California, San Diego, CA (United States). Center for Memory and Recording Research; Univ. of Donja Gorica, Podgorica (Montenegro). Faculty of Polytechnics
  3. Brno Univ. of Technology (Czech Republic)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1489659
Alternate Identifier(s):
OSTI ID: 1454662
Grant/Contract Number:  
AC02-05CH11231; DMR-0906957
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; domain walls; ferromagnetism; growth; magnetic anisotropy; magnetic texture

Citation Formats

Kan, Jimmy J., Lubarda, Marko V., Chan, Keith T., Uhlíř, Vojtěch, Scholl, Andreas, Lomakin, Vitaliy, and Fullerton, Eric E. Periodic chiral magnetic domains in single-crystal nickel nanowires. United States: N. p., 2018. Web. doi:10.1103/PhysRevMaterials.2.064406.
Kan, Jimmy J., Lubarda, Marko V., Chan, Keith T., Uhlíř, Vojtěch, Scholl, Andreas, Lomakin, Vitaliy, & Fullerton, Eric E. Periodic chiral magnetic domains in single-crystal nickel nanowires. United States. doi:10.1103/PhysRevMaterials.2.064406.
Kan, Jimmy J., Lubarda, Marko V., Chan, Keith T., Uhlíř, Vojtěch, Scholl, Andreas, Lomakin, Vitaliy, and Fullerton, Eric E. Mon . "Periodic chiral magnetic domains in single-crystal nickel nanowires". United States. doi:10.1103/PhysRevMaterials.2.064406. https://www.osti.gov/servlets/purl/1489659.
@article{osti_1489659,
title = {Periodic chiral magnetic domains in single-crystal nickel nanowires},
author = {Kan, Jimmy J. and Lubarda, Marko V. and Chan, Keith T. and Uhlíř, Vojtěch and Scholl, Andreas and Lomakin, Vitaliy and Fullerton, Eric E.},
abstractNote = {We report here on experimental and computational investigations of the domain structure of single-crystal Ni nanowires (NWs). The ${\sim}200\times{}200\times{}8000\mathrm{n}{\mathrm{m}}^{3}$ Ni NWs were grown by a thermal chemical vapor deposition technique that results in single-crystal structures. Magnetoresistance measurements of individual NWs suggest the average magnetization points largely off the NW long axis at zero field. X-ray photoemission electron microscopy images obtained at room temperature show a well-defined periodic magnetization pattern along the surface of the nanowires with a period of ${{\lambda}}_{\mathrm{avg}}=239\pm{}37\mathrm{nm}$. Finite element micromagnetic simulations reveal that when the material parameters of the modeled system match those of nickel crystal at $T=10\mathrm{K}$, an oscillatory magnetization configuration with a period closely matching experimental observation (${\lambda}=222\mathrm{nm}$) is obtainable at remanence. This magnetization configuration involves a periodic array of alternating chirality vortex domains distributed along the length of the NW. Vortex formation is attributable to the relatively high cubic anisotropy of the single crystal Ni NW system at $T=10\mathrm{K}$ and its reduced structural dimensions. The periodic alternating chirality vortex state is a topologically protected metastable state, analogous to an array of 360° domain walls in a thin strip. Simulations show that other remanent states are also possible, depending on the field history. At room temperature ($T=273\mathrm{K}$), simulations show vortices are no longer stable due to the expected reduced cubic anisotropy of the system, suggesting a disparity between the fabricated and modeled nanowires. Negative uniaxial anisotropy and magnetoelastic effects in the presence of compressive biaxial strain are shown to promote and restore formation of vortices at room temperature.},
doi = {10.1103/PhysRevMaterials.2.064406},
journal = {Physical Review Materials},
number = 6,
volume = 2,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Transmission electron microscopy images and electron diffraction patterns of a Ni NW after transfer to TEM grid.

Save / Share:

Works referenced in this record:

Nanomagnetics
journal, May 2003


A domain size effect in the magnetic hysteresis of NiZn‐ferrites
journal, November 1996

  • van der Zaag, P. J.; van der Valk, P. J.; Rekveldt, M. Th.
  • Applied Physics Letters, Vol. 69, Issue 19
  • DOI: 10.1063/1.117326

Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Realization of spin-wave logic gates
journal, January 2008

  • Schneider, T.; Serga, A. A.; Leven, B.
  • Applied Physics Letters, Vol. 92, Issue 2
  • DOI: 10.1063/1.2834714

On the theory of the domain structure of thin films of magnetically uni-axial materials
journal, July 1958

  • Málek, Zdeněk; Kamberský, Vladimír
  • Czechoslovak Journal of Physics, Vol. 8, Issue 4
  • DOI: 10.1007/BF01612066

Spin canting, surface magnetization, and finite-size effects in γ- Fe 2 O 3 particles
journal, April 1993


Observation of x-ray radiation pressure effects on nanocrystals
journal, October 2016

  • Kim, J. W.; Ulvestad, A.; Manna, S.
  • Journal of Applied Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.4965728

Magnetic recording: advancing into the future
journal, September 2002

  • Moser, Andreas; Takano, Kentaro; Margulies, David T.
  • Journal of Physics D: Applied Physics, Vol. 35, Issue 19
  • DOI: 10.1088/0022-3727/35/19/201

Domain wall trajectory determined by its fractional topological edge defects
journal, July 2013

  • Pushp, Aakash; Phung, Timothy; Rettner, Charles
  • Nature Physics, Vol. 9, Issue 8
  • DOI: 10.1038/nphys2669

Magnetic Tunnel Junctions for Spintronic Memories and Beyond
journal, May 2007

  • Ikeda, Shoji; Hayakawa, Jun; Lee, Young Min
  • IEEE Transactions on Electron Devices, Vol. 54, Issue 5
  • DOI: 10.1109/TED.2007.894617

Magnetic Vortex State Stability, Reversal and Dynamics in Restricted Geometries
journal, June 2008

  • Guslienko, K. Yu.
  • Journal of Nanoscience and Nanotechnology, Vol. 8, Issue 6
  • DOI: 10.1166/jnn.2008.003

Magnetic vortex generated by Dzyaloshinskii–Moriya interaction
journal, April 2013

  • Kwon, H. Y.; Kang, S. P.; Wu, Y. Z.
  • Journal of Applied Physics, Vol. 113, Issue 13
  • DOI: 10.1063/1.4799401

Device implications of spin-transfer torques
journal, April 2008

  • Katine, J. A.; Fullerton, Eric E.
  • Journal of Magnetism and Magnetic Materials, Vol. 320, Issue 7
  • DOI: 10.1016/j.jmmm.2007.12.013

Controlled synthesis of Ni/CuOx/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching
journal, March 2016

  • Park, Kyuhyun; Lee, Jang-Sik
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23069

Nanoscale magnetic domain structures in epitaxial cobalt films
journal, August 1996


Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays
journal, November 2012

  • Rosa, W. O.; Vivas, L. G.; Pirota, K. R.
  • Journal of Magnetism and Magnetic Materials, Vol. 324, Issue 22
  • DOI: 10.1016/j.jmmm.2012.05.047

Oriented Growth of Single-Crystal Ni Nanowires onto Amorphous SiO 2
journal, December 2010

  • Chan, Keith T.; Kan, Jimmy J.; Doran, Christopher
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl103301x

FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)
journal, April 2011

  • Chang, R.; Li, S.; Lubarda, M. V.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3563081

Magnetic logic using nanowires with perpendicular anisotropy
journal, May 2009


Characterization of strain and its effects on ferromagnetic nickel nanocubes
journal, December 2017

  • Manna, Sohini; Kim, Jong Woo; Lubarda, Marko V.
  • AIP Advances, Vol. 7, Issue 12
  • DOI: 10.1063/1.5004577

Self-assembly mechanism of Ni nanowires prepared with an external magnetic field
journal, January 2015

  • Li, Xiaoyu; Wang, Hu; Xie, Kenan
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.217

The domain structure in ultrathin magnetic films
journal, November 1993


360° domain walls: stability, magnetic field and electric current effects
journal, May 2016


Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states
journal, January 2012

  • Thomas, Luc; Hayashi, Masamitsu; Moriya, Rai
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1808

Magnetotransport studies of a single nickel nanowire
journal, December 2006


Spin-torque oscillator using a perpendicular polarizer and a planar free layer
journal, April 2007

  • Houssameddine, D.; Ebels, U.; Delaët, B.
  • Nature Materials, Vol. 6, Issue 6
  • DOI: 10.1038/nmat1905

Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions
journal, March 2015

  • Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09400

Advances in nanomagnetism via X-ray techniques
journal, December 2006

  • Srajer, G.; Lewis, L. H.; Bader, S. D.
  • Journal of Magnetism and Magnetic Materials, Vol. 307, Issue 1
  • DOI: 10.1016/j.jmmm.2006.06.033

Magnetic anisotropy in prismatic nickel nanowires
journal, December 2001

  • Sun, L.; Searson, P. C.; Chien, C. L.
  • Applied Physics Letters, Vol. 79, Issue 26
  • DOI: 10.1063/1.1428113

Magnetic Vortex Core Observation in Circular Dots of Permalloy
journal, August 2000


Phase-locking in double-point-contact spin-transfer devices
journal, September 2005

  • Mancoff, F. B.; Rizzo, N. D.; Engel, B. N.
  • Nature, Vol. 437, Issue 7057
  • DOI: 10.1038/nature04036

Controlled growth behavior of chemical vapor deposited Ni nanostructures
journal, June 2012


Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage
journal, January 2009

  • Frey, Natalie A.; Peng, Sheng; Cheng, Kai
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b815548h

Nano nickel oxide/nickel incorporated nickel composite coating for sensing and estimation of acetylcholine
journal, December 2006

  • Shibli, S. M. A.; Beenakumari, K. S.; Suma, N. D.
  • Biosensors and Bioelectronics, Vol. 22, Issue 5
  • DOI: 10.1016/j.bios.2006.01.020

State-of-the-Art Magnetic Hard Disk Drives
journal, May 2006

  • McFadyen, I. R.; Fullerton, E. E.; Carey, M. J.
  • MRS Bulletin, Vol. 31, Issue 5
  • DOI: 10.1557/mrs2006.97

Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films
journal, December 2007

  • Hellwig, Olav; Berger, Andreas; Kortright, Jeffrey B.
  • Journal of Magnetism and Magnetic Materials, Vol. 319, Issue 1-2
  • DOI: 10.1016/j.jmmm.2007.04.035

Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Quantitative analysis of shadow x-ray magnetic circular dichroism photoemission electron microscopy
journal, October 2015


Single-Domain Circular Nanomagnets
journal, August 1999


Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions
journal, July 2011

  • Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias
  • Nature Physics, Vol. 7, Issue 9
  • DOI: 10.1038/nphys2045

Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios
journal, November 2003


Theory of the Structure of Ferromagnetic Domains in Films and Small Particles
journal, December 1946


A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys
journal, May 1948

  • Stoner, E. C.; Wohlfarth, E. P.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 240, Issue 826
  • DOI: 10.1098/rsta.1948.0007

The incorporation of the Cauchy stress matrix tensor in micromagnetic simulations
journal, October 2010

  • Dean, J.; Bryan, M. T.; Hrkac, G.
  • Journal of Applied Physics, Vol. 108, Issue 7
  • DOI: 10.1063/1.3489969

Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model
journal, October 2014


Domain Wall Pinning in Narrow Ferromagnetic Ring Structures Probed by Magnetoresistance Measurements
journal, March 2003


Magnetic Domain-Wall Logic
journal, September 2005


360° domain wall generation in the soft layer of magnetic tunnel junctions
journal, February 2008

  • Hehn, M.; Lacour, D.; Montaigne, F.
  • Applied Physics Letters, Vol. 92, Issue 7
  • DOI: 10.1063/1.2838455

Spintronics, Magnetoresistive Heads, and the Emergence of the Digital World
journal, October 2016


Magnetic Domain-Wall Racetrack Memory
journal, April 2008


Variations in Magnetic Properties of Nanostructured Nickel
journal, December 2013

  • Choudhury, Paramita Kar; Banerjee, S.; Ramaprabhu, S.
  • Journal of Nanoscience and Nanotechnology, Vol. 13, Issue 12
  • DOI: 10.1166/jnn.2013.7931

Relation between grain size and domain size in MnZn ferrite studied by neutron depolarisation
journal, September 1991

  • van der Zaag, P. J.; Johnson, M. T.; Noordermeer, A.
  • Journal of Magnetism and Magnetic Materials, Vol. 99, Issue 1-3
  • DOI: 10.1016/0304-8853(91)90039-D

Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
journal, February 2012


Dynamic Origin of Stripe Domains
journal, January 2006


Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nanowires
journal, July 2012

  • Fohtung, E.; Kim, J. W.; Chan, Keith T.
  • Applied Physics Letters, Vol. 101, Issue 3
  • DOI: 10.1063/1.4737440