DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis

Abstract

X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. Here, the results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically,more » should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3];  [4];  [4];  [5]; ORCiD logo [6];  [6];  [7]; ORCiD logo [6]; ORCiD logo [4];  [2]; ORCiD logo [8]
  1. Columbia Univ., New York, NY (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
  3. Univ. of Copenhagen, Copenhagen (Denmark)
  4. Univ. of Duisburg-Essen, Essen (Germany)
  5. State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Fordham Univ., Bronx, NY (United States)
  6. State Univ. of New York at Stony Brook, Stony Brook, NY (United States)
  7. Brookhaven National Lab. (BNL), Upton, NY (United States)
  8. Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1487255
Report Number(s):
BNL-209757-2018-JAAM
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 51; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Banerjee, Soham, Liu, Chia -Hao, Lee, Jennifer D., Kovyakh, Anton, Grasmik, Viktoria, Prymak, Oleg, Koenigsmann, Christopher, Liu, Haiqing, Wang, Lei, Abeykoon, A. M. Milinda, Wong, Stanislaus S., Epple, Matthias, Murray, Christopher B., and Billinge, Simon J. L. Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b05897.
Banerjee, Soham, Liu, Chia -Hao, Lee, Jennifer D., Kovyakh, Anton, Grasmik, Viktoria, Prymak, Oleg, Koenigsmann, Christopher, Liu, Haiqing, Wang, Lei, Abeykoon, A. M. Milinda, Wong, Stanislaus S., Epple, Matthias, Murray, Christopher B., & Billinge, Simon J. L. Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis. United States. https://doi.org/10.1021/acs.jpcc.8b05897
Banerjee, Soham, Liu, Chia -Hao, Lee, Jennifer D., Kovyakh, Anton, Grasmik, Viktoria, Prymak, Oleg, Koenigsmann, Christopher, Liu, Haiqing, Wang, Lei, Abeykoon, A. M. Milinda, Wong, Stanislaus S., Epple, Matthias, Murray, Christopher B., and Billinge, Simon J. L. Mon . "Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis". United States. https://doi.org/10.1021/acs.jpcc.8b05897. https://www.osti.gov/servlets/purl/1487255.
@article{osti_1487255,
title = {Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis},
author = {Banerjee, Soham and Liu, Chia -Hao and Lee, Jennifer D. and Kovyakh, Anton and Grasmik, Viktoria and Prymak, Oleg and Koenigsmann, Christopher and Liu, Haiqing and Wang, Lei and Abeykoon, A. M. Milinda and Wong, Stanislaus S. and Epple, Matthias and Murray, Christopher B. and Billinge, Simon J. L.},
abstractNote = {X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. Here, the results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically, should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces.},
doi = {10.1021/acs.jpcc.8b05897},
journal = {Journal of Physical Chemistry. C},
number = 51,
volume = 122,
place = {United States},
year = {Mon Nov 26 00:00:00 EST 2018},
month = {Mon Nov 26 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Nanoparticles for Catalysis
journal, April 2013

  • Xia, Younan; Yang, Hong; Campbell, Charles T.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar400148q

Nanostructures in Biodiagnostics
journal, April 2005

  • Rosi, Nathaniel L.; Mirkin, Chad A.
  • Chemical Reviews, Vol. 105, Issue 4, p. 1547-1562
  • DOI: 10.1021/cr030067f

Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells
journal, February 2008

  • Sokolova, Viktoriya; Epple, Matthias
  • Angewandte Chemie International Edition, Vol. 47, Issue 8
  • DOI: 10.1002/anie.200703039

Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd–Pt Core–Shell Nanowire Catalysts for the Oxygen Reduction Reaction
journal, June 2011

  • Koenigsmann, Christopher; Santulli, Alexander C.; Gong, Kuanping
  • Journal of the American Chemical Society, Vol. 133, Issue 25
  • DOI: 10.1021/ja111130t

Semiconductor Clusters, Nanocrystals, and Quantum Dots
journal, February 1996


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Nonclassical nucleation and growth of inorganic nanoparticles
journal, June 2016


The Problem with Determining Atomic Structure at the Nanoscale
journal, April 2007


Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three-Shell 145-Atom Metal-Core Geometry of Pseudo Icosahedral Symmetry
journal, November 2000


Plasmonic twinned silver nanoparticles with molecular precision
journal, September 2016

  • Yang, Huayan; Wang, Yu; Chen, Xi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12809

Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution
journal, October 2007


Crystal Structure of Faradaurate-279: Au 279 (SPh- t Bu) 84 Plasmonic Nanocrystal Molecules
journal, October 2017

  • Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b08651

MicroED Structure of Au 146 (p-MBA) 57 at Subatomic Resolution Reveals a Twinned FCC Cluster
journal, October 2017

  • Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 22
  • DOI: 10.1021/acs.jpclett.7b02621

Atomic electron tomography: 3D structures without crystals
journal, September 2016


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis
journal, September 2007


Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis
journal, January 2013

  • Yang, Xiaohao; Masadeh, Ahmad S.; McBride, James R.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 22
  • DOI: 10.1039/c3cp00111c

Nanoparticles: Strained and Stiff
journal, July 2004


Finite size effects of nanoparticles on the atomic pair distribution functions
journal, October 2006

  • Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 62, Issue 6, p. 444-453
  • DOI: 10.1107/S0108767306034635

Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles
journal, October 2009

  • Alayoglu, Selim; Zavalij, Peter; Eichhorn, Bryan
  • ACS Nano, Vol. 3, Issue 10, p. 3127-3137
  • DOI: 10.1021/nn900242v

Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO 3
journal, June 2008

  • Smith, Millicent B.; Page, Katharine; Siegrist, Theo
  • Journal of the American Chemical Society, Vol. 130, Issue 22
  • DOI: 10.1021/ja0758436

Probing Local Dipoles and Ligand Structure in BaTiO 3 Nanoparticles
journal, August 2010

  • Page, Katharine; Proffen, Thomas; Niederberger, Markus
  • Chemistry of Materials, Vol. 22, Issue 15
  • DOI: 10.1021/cm100440p

Universal solvent restructuring induced by colloidal nanoparticles
journal, January 2015


Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles
journal, May 2014

  • Doan-Nguyen, Vicky V. T.; Kimber, Simon A. J.; Pontoni, Diego
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501591g

Ab initio determination of solid-state nanostructure
journal, March 2006

  • Juhás, P.; Cherba, D. M.; Duxbury, P. M.
  • Nature, Vol. 440, Issue 7084
  • DOI: 10.1038/nature04556

Periodicity and Atomic Ordering in Nanosized Particles of Crystals
journal, May 2008

  • Petkov, Valeri; Bedford, Nick; Knecht, Marc R.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 24
  • DOI: 10.1021/jp801195c

Atomic structure of nanometer-sized amorphous TiO 2
journal, December 2008


Building and refining complete nanoparticle structures with total scattering data
journal, February 2011

  • Page, Katharine; Hood, Taylor C.; Proffen, Thomas
  • Journal of Applied Crystallography, Vol. 44, Issue 2
  • DOI: 10.1107/S0021889811001968

Atomic Structures and Gram Scale Synthesis of Three Tetrahedral Quantum Dots
journal, July 2014

  • Beecher, Alexander N.; Yang, Xiaohao; Palmer, Joshua H.
  • Journal of the American Chemical Society, Vol. 136, Issue 30
  • DOI: 10.1021/ja503590h

Polymorphism in magic-sized Au144(SR)60 clusters
journal, June 2016

  • Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11859

Pair distribution function analysis applied to decahedral gold nanoparticles
journal, October 2017


Distorted f.c.c. arrangement of gold nanoclusters: a model of spherical particles with microstrains and stacking faults
journal, March 2008


Faulting in finite face-centered-cubic crystallites
journal, April 2011

  • Beyerlein, Kenneth R.; Snyder, Robert L.; Scardi, Paolo
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 67, Issue 3
  • DOI: 10.1107/S0108767311009482

Determination of nanoparticle structure type, size and strain distribution from X-ray data for monatomic f.c.c.-derived non-crystallographic nanoclusters
journal, September 2003

  • Cervellino, Antonio; Giannini, Cinzia; Guagliardi, Antonietta
  • Journal of Applied Crystallography, Vol. 36, Issue 5
  • DOI: 10.1107/S0021889803013542

Quantitative analysis of gold nanoparticles from synchrotron data by means of least-squares techniques: Least-squares analysis of gold nanoparticles
journal, October 2004


Pt–Au Alloying at the Nanoscale
journal, July 2012

  • Petkov, Valeri; Wanjala, Bridgid N.; Loukrakpam, Rameshwori
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl302329n

Resolving Atomic Ordering Differences in Group 11 Nanosized Metals and Binary Alloy Catalysts by Resonant High-Energy X-ray Diffraction and Computer Simulations
journal, October 2013

  • Petkov, Valeri; Shastri, Sarvjit; Shan, Shiyao
  • The Journal of Physical Chemistry C, Vol. 117, Issue 42
  • DOI: 10.1021/jp408017v

Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials
journal, October 2015


Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts
journal, March 2017

  • Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit
  • The Journal of Physical Chemistry C, Vol. 121, Issue 14
  • DOI: 10.1021/acs.jpcc.7b00139

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

PyFAI, a versatile library for azimuthal regrouping
journal, March 2013


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


PDFgetX3 : a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
journal, March 2013


PDFFIT , a program for full profile structural refinement of the atomic pair distribution function
journal, June 1999


Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems
journal, September 2015

  • Juhás, Pavol; Farrow, Christopher L.; Yang, Xiaohao
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 6, p. 562-568
  • DOI: 10.1107/S2053273315014473

Zerstreuung von Röntgenstrahlen
journal, January 1915


The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

A dense non-crystallographic packing of equal spheres
journal, September 1962


A Dense Packing of Hard Spheres with Five-fold Symmetry
journal, November 1965


Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations
journal, November 2005


Chasing Changing Nanoparticles with Time-Resolved Pair Distribution Function Methods
journal, March 2012

  • Newton, Mark A.; Chapman, Karena W.; Thompsett, David
  • Journal of the American Chemical Society, Vol. 134, Issue 11
  • DOI: 10.1021/ja2114163

Super-Stable, Highly Monodisperse Plasmonic Faradaurate-500 Nanocrystals with 500 Gold Atoms: Au ∼500 (SR) ∼120
journal, May 2014

  • Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Jan
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502327a

Size of Au-Nanoparticles Supported on Mesostructural Cellular Foams Studied by the Pair Distribution Function Technique
journal, September 2016

  • Poulain, Agnieszka; Sobczak, Izabela; Ziolek, Maria
  • Crystal Growth & Design, Vol. 16, Issue 10
  • DOI: 10.1021/acs.cgd.6b01029

Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique
journal, April 2017

  • Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 50, Issue 3
  • DOI: 10.1107/S1600576717003715

Metastability and Structural Polymorphism in Noble Metals: The Role of Composition and Metal Atom Coordination in Mono- and Bimetallic Nanoclusters
journal, January 2013

  • Sanchez, Sergio I.; Small, Matthew W.; Bozin, Emil S.
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn305314m

Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au 144 (SR) 60
journal, January 2009

  • Lopez-Acevedo, Olga; Akola, Jaakko; Whetten, Robert L.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 13
  • DOI: 10.1021/jp8115098

STEM Electron Diffraction and High-Resolution Images Used in the Determination of the Crystal Structure of the Au 144 (SR) 60 Cluster
journal, March 2013

  • Bahena, Daniel; Bhattarai, Nabraj; Santiago, Ulises
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz400111d

Polyol Synthesis of Uniform Silver Nanowires:  A Plausible Growth Mechanism and the Supporting Evidence
journal, July 2003

  • Sun, Yugang; Mayers, Brian; Herricks, Thurston
  • Nano Letters, Vol. 3, Issue 7
  • DOI: 10.1021/nl034312m

Growth of Silver Nanowires from Solutions:  A Cyclic Penta-twinned-Crystal Growth Mechanism
journal, May 2005

  • Zhang, Shu-Hong; Jiang, Zhi-Yuan; Xie, Zhao-Xiong
  • The Journal of Physical Chemistry B, Vol. 109, Issue 19
  • DOI: 10.1021/jp0441036

The role of twinning in shape evolution of anisotropic noble metal nanostructures
journal, January 2006

  • Elechiguerra, Jose Luis; Reyes-Gasga, Jose; Yacaman, Miguel Jose
  • Journal of Materials Chemistry, Vol. 16, Issue 40
  • DOI: 10.1039/b607128g

One-Pot, High-Yield Synthesis of 5-Fold Twinned Pd Nanowires and Nanorods
journal, April 2009

  • Huang, Xiaoqing; Zheng, Nanfeng
  • Journal of the American Chemical Society, Vol. 131, Issue 13, p. 4602-4603
  • DOI: 10.1021/ja9009343

Size- and Composition-Dependent Enhancement of Electrocatalytic Oxygen Reduction Performance in Ultrathin Palladium–Gold (Pd 1– x Au x ) Nanowires
journal, July 2012

  • Koenigsmann, Christopher; Sutter, Eli; Adzic, Radoslav R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29
  • DOI: 10.1021/jp306034d

Probing Ultrathin One-Dimensional Pd–Ni Nanostructures As Oxygen Reduction Reaction Catalysts
journal, July 2014

  • Liu, Haiqing; Koenigsmann, Christopher; Adzic, Radoslav R.
  • ACS Catalysis, Vol. 4, Issue 8
  • DOI: 10.1021/cs500125y

Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction
journal, August 2004


Works referencing / citing this record:

Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS
journal, January 2019

  • Harada, Masafumi; Ikegami, Risa; Kumara, Loku Singgappulige Rosantha
  • RSC Advances, Vol. 9, Issue 51
  • DOI: 10.1039/c9ra06519a

X-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm)
journal, January 2019