DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials

Abstract

An approach based on vibrational spectral measurements is described for determining the ionizable group content of ion conducting polymer membrane materials. Aimed at supporting the assessment of membrane stability and wear characteristics, performance is evaluated for attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, confocal Raman microscopy, and ATR FT-IR microscopy using perfluorinated ionomer membrane standards. One set of ionomer standards contained a sulfonic acid ionizable group and the other a sulfonyl imide group. The average number of backbone tetrafluoroethylene (TFE) units separating the ionizable-group containing side chains was in the range of 7.2–2.1 (sulfonic acid set) and 10.5–4.6 (sulfonyl imide set). A poly(tetrafluoroethylene) (PTFE) sample was included as a blank, representing the limit of zero ionizable group (and maximum TFE) content. Calibration relationships were derived from area-normalized vibrational spectra. For all three methods, calibration models applied to independent spectral measurements of samples predicted the ratio of backbone TFE groups to ionizable groups in the repeat unit ( m) with a standard error of ≤ ±0.3. The confocal Raman and ATR FT-IR microscopy techniques achieved ideal blank responses and the lowest prediction errors, down to m ± 0.1 at the 90% confidence level. With its relative simplicity, low sample size requirements, and potentialmore » for quantitative micron-scale spatial mapping of the ionizable group content within a membrane, the approach has application to advancing materials development, including exploratory synthesis, durability and wear assessment, and in situ studies of membrane process.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [3];  [3];  [4];  [2];  [2]
  1. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
  2. Department of Chemistry, Clemson University, Hunter Laboratories, Clemson, SC, USA
  3. Department of Chemistry, University of Utah, Salt Lake City, UT, USA
  4. 3M Energy Components Group, 3M Center, St Paul, MN, USA (retired)
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1484422
Grant/Contract Number:  
FG03-93ER14333
Resource Type:
Published Article
Journal Name:
Applied Spectroscopy
Additional Journal Information:
Journal Name: Applied Spectroscopy Journal Volume: 72 Journal Issue: 1; Journal ID: ISSN 0003-7028
Publisher:
SAGE Publications
Country of Publication:
United States
Language:
English

Citation Formats

Korzeniewski, Carol, Liang, Ying, Zhang, Pei, Sharif, Iqbal, Kitt, Jay P., Harris, Joel M., Hamrock, Steven J., Creager, Stephen E., and DesMarteau, Darryl D. Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials. United States: N. p., 2017. Web. doi:10.1177/0003702817728243.
Korzeniewski, Carol, Liang, Ying, Zhang, Pei, Sharif, Iqbal, Kitt, Jay P., Harris, Joel M., Hamrock, Steven J., Creager, Stephen E., & DesMarteau, Darryl D. Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials. United States. https://doi.org/10.1177/0003702817728243
Korzeniewski, Carol, Liang, Ying, Zhang, Pei, Sharif, Iqbal, Kitt, Jay P., Harris, Joel M., Hamrock, Steven J., Creager, Stephen E., and DesMarteau, Darryl D. Fri . "Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials". United States. https://doi.org/10.1177/0003702817728243.
@article{osti_1484422,
title = {Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials},
author = {Korzeniewski, Carol and Liang, Ying and Zhang, Pei and Sharif, Iqbal and Kitt, Jay P. and Harris, Joel M. and Hamrock, Steven J. and Creager, Stephen E. and DesMarteau, Darryl D.},
abstractNote = {An approach based on vibrational spectral measurements is described for determining the ionizable group content of ion conducting polymer membrane materials. Aimed at supporting the assessment of membrane stability and wear characteristics, performance is evaluated for attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, confocal Raman microscopy, and ATR FT-IR microscopy using perfluorinated ionomer membrane standards. One set of ionomer standards contained a sulfonic acid ionizable group and the other a sulfonyl imide group. The average number of backbone tetrafluoroethylene (TFE) units separating the ionizable-group containing side chains was in the range of 7.2–2.1 (sulfonic acid set) and 10.5–4.6 (sulfonyl imide set). A poly(tetrafluoroethylene) (PTFE) sample was included as a blank, representing the limit of zero ionizable group (and maximum TFE) content. Calibration relationships were derived from area-normalized vibrational spectra. For all three methods, calibration models applied to independent spectral measurements of samples predicted the ratio of backbone TFE groups to ionizable groups in the repeat unit ( m) with a standard error of ≤ ±0.3. The confocal Raman and ATR FT-IR microscopy techniques achieved ideal blank responses and the lowest prediction errors, down to m ± 0.1 at the 90% confidence level. With its relative simplicity, low sample size requirements, and potential for quantitative micron-scale spatial mapping of the ionizable group content within a membrane, the approach has application to advancing materials development, including exploratory synthesis, durability and wear assessment, and in situ studies of membrane process.},
doi = {10.1177/0003702817728243},
journal = {Applied Spectroscopy},
number = 1,
volume = 72,
place = {United States},
year = {Fri Sep 15 00:00:00 EDT 2017},
month = {Fri Sep 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1177/0003702817728243

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Raman Scattering from Finite Polytetrafluoroethylene Chains and a Highly Oriented TFE-HFP Copolymer Monofilament
journal, July 1978


Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices
journal, September 2013

  • Kreuer, Klaus-Dieter
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402742u

Operando Raman Micro-Spectroscopy of Polymer Electrolyte Fuel Cells
journal, January 2016

  • Kendrick, Ian; Fore, Jennifer; Doan, Jonathan
  • Journal of The Electrochemical Society, Vol. 163, Issue 4
  • DOI: 10.1149/2.0211604jes

Origin of Toughness in Dispersion-Cast Nafion Membranes
journal, March 2015

  • Kim, Yu Seung; Welch, Cynthia F.; Hjelm, Rex P.
  • Macromolecules, Vol. 48, Issue 7
  • DOI: 10.1021/ma502538k

Spectroscopic and Theoretical Study of (CF 3 SO 2 ) 2 N - (TFSI - ) and (CF 3 SO 2 ) 2 NH (HTFSI)
journal, May 1998

  • Rey, I.; Johansson, P.; Lindgren, J.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 19
  • DOI: 10.1021/jp980375v

Infrared Spectroscopy of Bis[(perfluoroalkyl)sulfonyl] Imide Ionomer Membrane Materials
journal, May 2009

  • Byun, Chang Kyu; Sharif, Iqbal; DesMarteau, Darryl D.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18
  • DOI: 10.1021/jp900164x

Infrared spectra of amorphous and crystalline poly(tetrafluoroethylene)
journal, September 1985

  • Starkweather, Howard W.; Ferguson, Raymond C.; Chase, D. Bruce
  • Macromolecules, Vol. 18, Issue 9
  • DOI: 10.1021/ma00151a007

Impact of Substrate and Processing on Confinement of Nafion Thin Films
journal, April 2014

  • Kusoglu, Ahmet; Kushner, Douglas; Paul, Devproshad K.
  • Advanced Functional Materials, Vol. 24, Issue 30
  • DOI: 10.1002/adfm.201304311

State of Understanding of Nafion
journal, October 2004

  • Mauritz, Kenneth A.; Moore, Robert B.
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr0207123

Analytical Figures of Merit: From Univariate to Multiway Calibration
journal, March 2014


Conductivity and Wettability Changes of Ultrathin Nafion Films Subjected to Thermal Annealing and Liquid Water Exposure
journal, January 2014

  • Paul, Devproshad K.; Karan, Kunal
  • The Journal of Physical Chemistry C, Vol. 118, Issue 4
  • DOI: 10.1021/jp410510x

The Molecular Structure of Perfluorocarbon Polymers. Infrared Studies on Polytetrafluoroethylene 1
journal, March 1959

  • Moynihan, R. E.
  • Journal of the American Chemical Society, Vol. 81, Issue 5
  • DOI: 10.1021/ja01514a009

Signal Enhanced FTIR Analysis of Alignment in NAFION Thin Films at SiO 2 and Au Interfaces
journal, December 2015


Resolving the Contradiction between Anomalously High Water Uptake and Low Conductivity of Nanothin Nafion films on SiO 2 Substrate
journal, October 2015


Spatial Filtering of a Diode Laser Beam for Confocal Raman Microscopy
journal, April 2015

  • Kitt, Jay P.; Bryce, David A.; Harris, Joel M.
  • Applied Spectroscopy, Vol. 69, Issue 4
  • DOI: 10.1366/14-07671

An infrared study of the effects of hydration on cation-loaded nafion thin films
journal, June 2000


Fourier Transform Infrared Spectroscopy of Perfluorocarboxylate Polymers
journal, May 2000


Linear coupling of alignment with transport in a polymer electrolyte membrane
journal, June 2011

  • Li, Jing; Park, Jong Keun; Moore, Robert B.
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3048

Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes
journal, June 2013

  • Grygolowicz-Pawlak, Ewa; Crespo, Gastón A.; Ghahraman Afshar, Majid
  • Analytical Chemistry, Vol. 85, Issue 13
  • DOI: 10.1021/ac400470n

FTIR equivalent weight determination of perfluorosulfonate polymers
journal, October 2010

  • Perusich, Stephen A.
  • Journal of Applied Polymer Science, Vol. 120, Issue 1
  • DOI: 10.1002/app.32871

Understanding and Modeling Removal of Anionic Organic Contaminants (AOCs) by Anion Exchange Resins
journal, June 2014

  • Zhang, Huichun; Shields, Anthony J.; Jadbabaei, Nastaran
  • Environmental Science & Technology, Vol. 48, Issue 13
  • DOI: 10.1021/es500914q

Confocal Raman Microscopy for in Situ Detection of Solid-Phase Extraction of Pyrene into Single C 18 –Silica Particles
journal, January 2014

  • Kitt, Jay P.; Harris, Joel M.
  • Analytical Chemistry, Vol. 86, Issue 3
  • DOI: 10.1021/ac403514r

Water purification by membranes: The role of polymer science
journal, June 2010

  • Geise, Geoffrey M.; Lee, Hae-Seung; Miller, Daniel J.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 48, Issue 15
  • DOI: 10.1002/polb.22037

Confinement-Driven Increase in Ionomer Thin-Film Modulus
journal, April 2014

  • Page, Kirt A.; Kusoglu, Ahmet; Stafford, Christopher M.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl501233g

IR External Reflection Spectroscopy: A PROBE FOR CHEMICALLY MODIFIED SURFACES
journal, October 1988


Characterization of lattice disorder in the low-temperature phase of irradiated PTFE by vibrational spectroscopy
journal, September 1983


Decision and detection limits for calibration curves
journal, July 1970

  • Hubaux, Andre.; Vos, Gilbert.
  • Analytical Chemistry, Vol. 42, Issue 8
  • DOI: 10.1021/ac60290a013

Confocal Raman Microspectroscopy Using a Stigmatic Spectrograph and CCD Detector
journal, February 1994

  • Williams, K. P. J.; Pitt, G. D.; Batchelder, D. N.
  • Applied Spectroscopy, Vol. 48, Issue 2
  • DOI: 10.1366/0003702944028407

An Introduction to Multivariate Calibration and Analysis
journal, September 1987

  • Beebe, Kenneth R.; Kowalski, Bruce R.
  • Analytical Chemistry, Vol. 59, Issue 17
  • DOI: 10.1021/ac00144a725

Proton Exchange Membranes for Fuel Cell Applications
journal, September 2006

  • Hamrock, Steven J.; Yandrasits, Michael A.
  • Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 46, Issue 3
  • DOI: 10.1080/15583720600796474

Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis
journal, September 2016

  • Kiefer, Johannes; Wei, Gang; Colombi Ciacchi, Lucio
  • Applied Spectroscopy, Vol. 71, Issue 6
  • DOI: 10.1177/0003702816668533

A Capacitance Sensor for Water: Trace Moisture Measurement in Gases and Organic Solvents
journal, September 2012

  • Ohira, Shin-Ichi; Goto, Kayoko; Toda, Kei
  • Analytical Chemistry, Vol. 84, Issue 20
  • DOI: 10.1021/ac3024069

Characteristics of Self-Assembled Ultrathin Nafion Films
journal, April 2013

  • Paul, Devproshad K.; Karan, Kunal; Docoslis, Aristides
  • Macromolecules, Vol. 46, Issue 9
  • DOI: 10.1021/ma4002319

Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998)
journal, January 1998


Simultaneous Detection of Two Analytes Using a Spectroelectrochemical Sensor
journal, March 2010

  • Andria, Sara E.; Seliskar, Carl J.; Heineman, William R.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902243u

Mechanically Coupled Internal Coordinates of Ionomer Vibrational Modes
journal, July 2010

  • Webber, Matthew; Dimakis, Nicholas; Kumari, Dunesh
  • Macromolecules, Vol. 43, Issue 13
  • DOI: 10.1021/ma100915u

A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications
journal, June 2013

  • Kreuer, Klaus-Dieter; Portale, Giuseppe
  • Advanced Functional Materials, Vol. 23, Issue 43
  • DOI: 10.1002/adfm.201300376

Ab Initio Calculation of the IR Spectrum of PTFE: Helical Symmetry and Defects
journal, January 2013

  • Quarti, Claudio; Milani, Alberto; Castiglioni, Chiara
  • The Journal of Physical Chemistry B, Vol. 117, Issue 2
  • DOI: 10.1021/jp3102145

Fluorinated Ionomers and Ionomer Membranes Containing the bis[(perfluoroalkyl) sulfonyl]imide Protogenic Group
book, May 2014

  • Sharif, Iqbal; Creager, Stephen; DesMarteau, Darryl D.
  • Handbook of Fluoropolymer Science and Technology
  • DOI: 10.1002/9781118850220.ch22

Water–polymer interfacial area in Nafion: Comparison with structural models
journal, April 2011


Nanostructure/Swelling Relationships of Bulk and Thin-Film PFSA Ionomers
journal, May 2016

  • Kusoglu, Ahmet; Dursch, Thomas J.; Weber, Adam Z.
  • Advanced Functional Materials, Vol. 26, Issue 27
  • DOI: 10.1002/adfm.201600861

In situ Infrared Reflection Absorption Spectroscopy Studies of the Interaction of Nafion ® with the Pt Electrode Surface
journal, May 2003

  • Malevich, Dzmitry; Zamlynny, Vlad; Sun, Shi-Gang
  • Zeitschrift für Physikalische Chemie, Vol. 217, Issue 5-2003
  • DOI: 10.1524/zpch.217.5.513.20452

The Development of New Membranes for Proton Exchange Membrane Fuel Cells
conference, January 2007

  • Emery, Mike; Frey, Matthew; Guerra, Mike
  • 212th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2780909

Spatially Resolved Analysis of Small Particles by Confocal Raman Microscopy:  Depth Profiling and Optical Trapping
journal, February 2004

  • Bridges, Travis E.; Houlne, Michael P.; Harris, Joel M.
  • Analytical Chemistry, Vol. 76, Issue 3
  • DOI: 10.1021/ac034969s

Elucidating the Ionomer-Electrified Metal Interface
journal, December 2010

  • Kendrick, Ian; Kumari, Dunesh; Yakaboski, Adam
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja1081487