DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications

Abstract

The rich potential energy surface of the water undecamer (H2O)11 was explored with a basin hopping algorithm using a TIP4P potential and other methods followed by extensive ab initio MP2 minimizations and CCSD(T) corrections. This protocol yielded 17, 66, and 125 distinct isomers within 0.5, 1.0, and 2.0 kcal mol–1 of the complete basis set CCSD(T) global minimum, respectively. These isomers were categorized into 15 different families based on their oxygen framework and hydrogen bonding topology. Determination of the global minimum proved challenging because of the presence of many nearly isoenergetic isomers. The predicted global minimum varied among ab initio methods, density functionals, and model potentials, and it was sensitive to the choice of energy extrapolation schemes, higher-order CCSD(T) corrections, and inclusion of zero-point vibrational energy. In conclusion, the presence of a large number of nearly degenerate structures and the isomerization between them has manifested itself in the anomalous broadening of the heat capacity curve of the undecamer in simulations around the melting region.

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [3];  [4];  [5]; ORCiD logo [1]
  1. Furman Univ., Greenville, SC (United States); Bucknell Univ., Lewisburg, PA (United States)
  2. Bucknell Univ., Lewisburg, PA (United States)
  3. Univ. of Virginia, Charlottesville, VA (United States); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany)
  4. Univ. of Virginia, Charlottesville, VA (United States)
  5. Polish Academy of Sciences, Warszawa (Poland)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1480244
Grant/Contract Number:  
AC02-05CH11231; CHE-1213521; CHE-1508556; CHE-1229354; TG-CHE120025
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 14; Journal Issue: 2; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Temelso, Berhane, Klein, Katurah L., Mabey, Joel W., Pérez, Cristóbal, Pate, Brooks H., Kisiel, Zbigniew, and Shields, George C. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications. United States: N. p., 2018. Web. doi:10.1021/acs.jctc.7b00938.
Temelso, Berhane, Klein, Katurah L., Mabey, Joel W., Pérez, Cristóbal, Pate, Brooks H., Kisiel, Zbigniew, & Shields, George C. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications. United States. https://doi.org/10.1021/acs.jctc.7b00938
Temelso, Berhane, Klein, Katurah L., Mabey, Joel W., Pérez, Cristóbal, Pate, Brooks H., Kisiel, Zbigniew, and Shields, George C. Fri . "Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications". United States. https://doi.org/10.1021/acs.jctc.7b00938. https://www.osti.gov/servlets/purl/1480244.
@article{osti_1480244,
title = {Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications},
author = {Temelso, Berhane and Klein, Katurah L. and Mabey, Joel W. and Pérez, Cristóbal and Pate, Brooks H. and Kisiel, Zbigniew and Shields, George C.},
abstractNote = {The rich potential energy surface of the water undecamer (H2O)11 was explored with a basin hopping algorithm using a TIP4P potential and other methods followed by extensive ab initio MP2 minimizations and CCSD(T) corrections. This protocol yielded 17, 66, and 125 distinct isomers within 0.5, 1.0, and 2.0 kcal mol–1 of the complete basis set CCSD(T) global minimum, respectively. These isomers were categorized into 15 different families based on their oxygen framework and hydrogen bonding topology. Determination of the global minimum proved challenging because of the presence of many nearly isoenergetic isomers. The predicted global minimum varied among ab initio methods, density functionals, and model potentials, and it was sensitive to the choice of energy extrapolation schemes, higher-order CCSD(T) corrections, and inclusion of zero-point vibrational energy. In conclusion, the presence of a large number of nearly degenerate structures and the isomerization between them has manifested itself in the anomalous broadening of the heat capacity curve of the undecamer in simulations around the melting region.},
doi = {10.1021/acs.jctc.7b00938},
journal = {Journal of Chemical Theory and Computation},
number = 2,
volume = 14,
place = {United States},
year = {Fri Jan 12 00:00:00 EST 2018},
month = {Fri Jan 12 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Global Optimization of Clusters, Crystals, and Biomolecules
journal, August 1999


Quantum-Mechanical investigation of large water clusters
journal, February 1994

  • Kirschner, Karl N.; Shields, George C.
  • International Journal of Quantum Chemistry, Vol. 52, Issue S28
  • DOI: 10.1002/qua.560520835

Global Search for Minimum Energy (H 2 O) n Clusters, n = 3−5
journal, July 2005

  • Day, Mary Beth; Kirschner, Karl N.; Shields, George C.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 30
  • DOI: 10.1021/jp0513317

A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing
journal, February 2000

  • Day, Paul N.; Pachter, Ruth; Gordon, Mark S.
  • The Journal of Chemical Physics, Vol. 112, Issue 5
  • DOI: 10.1063/1.480775

Efficient global geometry optimization of clusters
journal, June 2003

  • Hartke, B.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 24, Issue 1-3
  • DOI: 10.1140/epjd/e2003-00182-9

Larger Water Clusters with Edges and Corners on Their Way to Ice:  Structural Trends Elucidated with an Improved Parallel Evolutionary Algorithm
journal, May 2006

  • Bandow, Bernhard; Hartke, Bernd
  • The Journal of Physical Chemistry A, Vol. 110, Issue 17
  • DOI: 10.1021/jp060512l

Global Minima of Water Clusters (H 2 O) N , N ≤ 25, Described by Three Empirical Potentials
journal, April 2003

  • Kabrede, H.; Hentschke, R.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 16
  • DOI: 10.1021/jp027783q

An approach based on genetic algorithms and DFT for studying clusters: (H2O)n (2⩽n⩽13) cluster analysis
journal, April 2006

  • de Abreu e. Silva, Elcio Sabato; Duarte, Hélio Anderson; Belchior, Jadson Cláudio
  • Chemical Physics, Vol. 323, Issue 2-3
  • DOI: 10.1016/j.chemphys.2005.10.034

Global optimization analysis of water clusters (H[sub 2]O)[sub n] (11≤n≤13) through a genetic evolutionary approach
journal, January 2002

  • Guimarães, Freddy F.; Belchior, Jadson C.; Johnston, Roy L.
  • The Journal of Chemical Physics, Vol. 116, Issue 19
  • DOI: 10.1063/1.1471240

Monte Carlo-minimization approach to the multiple-minima problem in protein folding.
journal, October 1987

  • Li, Z.; Scheraga, H. A.
  • Proceedings of the National Academy of Sciences, Vol. 84, Issue 19
  • DOI: 10.1073/pnas.84.19.6611

Global minima of water clusters (H2O)n, n≤21, described by an empirical potential
journal, April 1998


Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
journal, June 2004

  • Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1724816

Improved minima-hopping. TIP4P water clusters, <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:msub><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> with <mml:math altimg="si4.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mi>n</mml:mi><mml:mo>⩽</mml:mo><mml:mn>37</mml:mn></mml:mrow></mml:math>
journal, July 2009


Water nanodroplets: Predictions of five model potentials
journal, May 2013

  • Kazachenko, Sergey; Thakkar, Ajit J.
  • The Journal of Chemical Physics, Vol. 138, Issue 19
  • DOI: 10.1063/1.4804399

Search for Low Energy Structures of Water Clusters (H 2 O) n , n = 20−22, 48, 123, and 293
journal, November 2003

  • Kazimirski, Jan K.; Buch, Victoria
  • The Journal of Physical Chemistry A, Vol. 107, Issue 46
  • DOI: 10.1021/jp0305436

Development of an Efficient Geometry Optimization Method for Water Clusters
journal, November 2008

  • Takeuchi, Hiroshi
  • Journal of Chemical Information and Modeling, Vol. 48, Issue 11
  • DOI: 10.1021/ci800238w

A Critical Assessment of Two-Body and Three-Body Interactions in Water
journal, December 2012

  • Medders, Gregory R.; Babin, Volodymyr; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 2
  • DOI: 10.1021/ct300913g

The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

A general purpose model for the condensed phases of water: TIP4P/2005
journal, December 2005

  • Abascal, J. L. F.; Vega, C.
  • The Journal of Chemical Physics, Vol. 123, Issue 23
  • DOI: 10.1063/1.2121687

Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
journal, May 2004

  • Horn, Hans W.; Swope, William C.; Pitera, Jed W.
  • The Journal of Chemical Physics, Vol. 120, Issue 20
  • DOI: 10.1063/1.1683075

A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
journal, May 2000

  • Mahoney, Michael W.; Jorgensen, William L.
  • The Journal of Chemical Physics, Vol. 112, Issue 20
  • DOI: 10.1063/1.481505

Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles
journal, January 2002

  • Burnham, Christian J.; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 116, Issue 4
  • DOI: 10.1063/1.1423942

The Flexible, Polarizable, Thole-Type Interaction Potential for Water (TTM2-F) Revisited
journal, March 2006

  • Fanourgakis, George S.; Xantheas, Sotiris S.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 11
  • DOI: 10.1021/jp056477k

CI study of the water dimer potential surface
journal, February 1976

  • Matsuoka, O.; Clementi, E.; Yoshimine, M.
  • The Journal of Chemical Physics, Vol. 64, Issue 4
  • DOI: 10.1063/1.432402

Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation
journal, May 2003

  • Ren, Pengyu; Ponder, Jay W.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 24
  • DOI: 10.1021/jp027815+

Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase
journal, December 2012

  • Babin, Volodymyr; Medders, Gregory R.; Paesani, Francesco
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 24
  • DOI: 10.1021/jz3017733

Structures, energies, and vibrational spectra of water undecamer and dodecamer: An ab initio study
journal, June 2001

  • Lee, Han Myoung; Suh, Seung Bum; Kim, Kwang S.
  • The Journal of Chemical Physics, Vol. 114, Issue 24
  • DOI: 10.1063/1.1374926

Size-dependent transition from all-surface to interior-molecule structures in pure neutral water clusters
journal, December 2002

  • Hartke, Bernd
  • Physical Chemistry Chemical Physics, Vol. 5, Issue 2
  • DOI: 10.1039/b209966g

Global minima for water clusters (H2O)n, n⩽21, described by a five-site empirical potential
journal, November 2005


Lowest-Energy Structures of Water Clusters (H 2 O) 11 and (H 2 O) 13
journal, October 2006

  • Bulusu, Satya; Yoo, Soohaeng; Aprà, Edo
  • The Journal of Physical Chemistry A, Vol. 110, Issue 42
  • DOI: 10.1021/jp0655726

Structure and Stability of Water Clusters (H 2 O) n , n = 8−20:  An Ab Initio Investigation
journal, November 2001

  • Maheshwary, Shruti; Patel, Nitin; Sathyamurthy, Narayanasami
  • The Journal of Physical Chemistry A, Vol. 105, Issue 46
  • DOI: 10.1021/jp013141b

A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1–60, and ice
journal, October 2009

  • Lenz, Annika; Ojamäe, Lars
  • The Journal of Chemical Physics, Vol. 131, Issue 13
  • DOI: 10.1063/1.3239474

Structural optimization of molecular clusters with density functional theory combined with basin hopping
journal, October 2012

  • Do, Hainam; Besley, Nicholas A.
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4755994

Monte Carlo Investigation of the Thermodynamic Properties of (H 2 O) n and (H 2 O) n H 2 ( n = 2−20) Clusters
journal, April 2011

  • Holden, Glen L.; Freeman, David L.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 16
  • DOI: 10.1021/jp201082p

Theoretical study of structure and spectra of cage clusters (H2O)n, n=11,12
journal, January 2001


Energetic and fragmentation stability of water clusters (H2O)n, n=2–30
journal, May 2011


Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide
journal, April 1995

  • Caldwell, James W.; Kollman, Peter A.
  • The Journal of Physical Chemistry, Vol. 99, Issue 16
  • DOI: 10.1021/j100016a067

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of (H 2 O) n , n = 6, 11, and 16
journal, July 2013

  • Iwata, Suehiro; Bandyopadhyay, Pradipta; Xantheas, Sotiris S.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 30
  • DOI: 10.1021/jp403837z

Monte Carlo Temperature Basin Paving with Effective Fragment Potential: An Efficient and Fast Method for Finding Low-Energy Structures of Water Clusters (H 2 O) 20 and (H 2 O) 25
journal, October 2011

  • Shanker, Sudhanshu; Bandyopadhyay, Pradipta
  • The Journal of Physical Chemistry A, Vol. 115, Issue 42
  • DOI: 10.1021/jp2073864

Accurate Predictions of Water Cluster Formation, (H 2 O) n =2−10
journal, November 2010

  • Shields, Robert M.; Temelso, Berhane; Archer, Kaye A.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 43
  • DOI: 10.1021/jp104865w

Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections
journal, November 2011

  • Temelso, Berhane; Archer, Kaye A.; Shields, George C.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 43
  • DOI: 10.1021/jp2069489

Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer
journal, May 2013


Equation of State Calculations by Fast Computing Machines
journal, June 1953

  • Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth, Marshall N.
  • The Journal of Chemical Physics, Vol. 21, Issue 6
  • DOI: 10.1063/1.1699114

Compatibility of Quantum Chemical Methods and Empirical (MM) Water Models in Quantum Mechanics/Molecular Mechanics Liquid Water Simulations
journal, November 2009

  • Shaw, Katherine E.; Woods, Christopher J.; Mulholland, Adrian J.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1021/jz900096p

On the limited memory BFGS method for large scale optimization
journal, August 1989

  • Liu, Dong C.; Nocedal, Jorge
  • Mathematical Programming, Vol. 45, Issue 1-3
  • DOI: 10.1007/BF01589116

The Limitations of Certain Density Functionals in Modeling Neutral Water Clusters
journal, March 2008

  • Shields, George C.; Kirschner, Karl N.
  • Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 38, Issue 1
  • DOI: 10.1080/15533170701853918

Wavefunction methods for the accurate characterization of water clusters: Wavefunction methods for accurate characterization of water clusters
journal, September 2013

  • Howard, J. Coleman; Tschumper, Gregory S.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 3
  • DOI: 10.1002/wcms.1168

Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles
journal, January 2002

  • Xantheas, Sotiris S.; Burnham, Christian J.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 116, Issue 4
  • DOI: 10.1063/1.1423941

The binding energies of the D2d and S4 water octamer isomers: High-level electronic structure and empirical potential results
journal, January 2004

  • Xantheas, Sotiris S.; Aprà, Edoardo
  • The Journal of Chemical Physics, Vol. 120, Issue 2
  • DOI: 10.1063/1.1626624

The ORCA program system: The ORCA program system
journal, June 2011

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.81

ArbAlign: A Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn–Munkres Algorithm
journal, May 2017

  • Temelso, Berhane; Mabey, Joel M.; Kubota, Toshiro
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 5
  • DOI: 10.1021/acs.jcim.6b00546

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Significance of higher-order many-body interaction energy terms in water clusters and bulk water
journal, January 1996


R12 methods in explicitly correlated molecular electronic structure theory
journal, July 2006

  • Klopper, Wim; Manby, Frederick R.; Ten-No, Seiichiro
  • International Reviews in Physical Chemistry, Vol. 25, Issue 3
  • DOI: 10.1080/01442350600799921

General orbital invariant MP2-F12 theory
journal, April 2007

  • Werner, Hans-Joachim; Adler, Thomas B.; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.2712434

Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
journal, February 2008

  • Peterson, Kirk A.; Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2831537

Optimized auxiliary basis sets for explicitly correlated methods
journal, November 2008

  • Yousaf, Kazim E.; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 129, Issue 18
  • DOI: 10.1063/1.3009271

Complete basis set limit ofAb initio binding energies and geometrical parameters for various typical types of complexes
journal, January 2008

  • Min, Seung Kyu; Lee, Eun Cheol; Lee, Han Myoung
  • Journal of Computational Chemistry, Vol. 29, Issue 8
  • DOI: 10.1002/jcc.20880

Basis set dependence of higher-order correlation effects in π-type interactions
journal, January 2012

  • Carrell, Emily J.; Thorne, Cara M.; Tschumper, Gregory S.
  • The Journal of Chemical Physics, Vol. 136, Issue 1
  • DOI: 10.1063/1.3671950

Assessment of Coupled Cluster Theory and more Approximate Methods for Hydrogen Bonded Systems
journal, September 2013

  • Boese, A. Daniel
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 10
  • DOI: 10.1021/ct400558w

Importance and Reliability of Small Basis Set CCSD(T) Corrections to MP2 Binding and Relative Energies of Water Clusters
journal, March 2015

  • Temelso, Berhane; Renner, Carla R.; Shields, George C.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 4
  • DOI: 10.1021/ct500944v

A fifth-order perturbation comparison of electron correlation theories
journal, May 1989


Simplified CCSD(T)-F12 methods: Theory and benchmarks
journal, February 2009

  • Knizia, Gerald; Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 130, Issue 5
  • DOI: 10.1063/1.3054300

A simple and efficient CCSD(T)-F12 approximation
journal, December 2007

  • Adler, Thomas B.; Knizia, Gerald; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 127, Issue 22
  • DOI: 10.1063/1.2817618

Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions
journal, January 2008

  • Marchetti, Oliver; Werner, Hans-Joachim
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 23
  • DOI: 10.1039/b804334e

The Role of Anharmonicity in Hydrogen-Bonded Systems: The Case of Water Clusters
journal, August 2011

  • Temelso, Berhane; Shields, George C.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 9
  • DOI: 10.1021/ct2003308

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

Three-dimensional hydrogen-bond geometry and probability information from a crystal survey
journal, December 1996

  • Mills, J. E. J.; Dean, P. M.
  • Journal of Computer-Aided Molecular Design, Vol. 10, Issue 6
  • DOI: 10.1007/BF00134183

Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
journal, February 2002

  • Weigend, Florian; Köhn, Andreas; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 116, Issue 8
  • DOI: 10.1063/1.1445115

Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy
journal, May 2012


CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures
journal, April 2009

  • Bates, Desiree M.; Tschumper, Gregory S.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 15
  • DOI: 10.1021/jp8105919

High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H 2 O) 16 and (H 2 O) 17 : A New Global Minimum for (H 2 O) 16
journal, October 2010

  • Yoo, Soohaeng; Aprà, Edoardo; Zeng, Xiao Cheng
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 20
  • DOI: 10.1021/jz101245s

Intermolecular Interaction in Water Hexamer
journal, November 2010

  • Chen, Yiming; Li, Hui
  • The Journal of Physical Chemistry A, Vol. 114, Issue 43
  • DOI: 10.1021/jp104822e

Parallel-Tempering Monte Carlo Study of (H 2 O) n = 6 - 9
journal, September 2003

  • Tharrington, Arnold N.; Jordan, Kenneth D.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 38
  • DOI: 10.1021/jp030355f

Size-Dependent Phase Changes in Water Clusters
journal, August 2011

  • Kaneko, Toshihiro; Akimoto, Takuma; Yasuoka, Kenji
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200458m

Hydrogen Bond Cooperativity and the Three-Dimensional Structures of Water Nonamers and Decamers
journal, October 2014

  • Pérez, Cristóbal; Zaleski, Daniel P.; Seifert, Nathan A.
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201407447

Nuclear Quantum Effects in the Reorientation of Water
journal, July 2010

  • Paesani, Francesco; Yoo, Soohaeng; Bakker, Huib J.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 15
  • DOI: 10.1021/jz100734w

The Water Hexamer: Cage, Prism, or Both. Full Dimensional Quantum Simulations Say Both
journal, June 2012

  • Wang, Yimin; Babin, Volodymyr; Bowman, Joel M.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja304528m

Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism
journal, March 2016


On the Quantum Nature of the Shared Proton in Hydrogen Bonds
journal, February 1997


The nature of the hydrated excess proton in water
journal, February 1999

  • Marx, Dominik; Tuckerman, Mark E.; Hutter, Jürg
  • Nature, Vol. 397, Issue 6720
  • DOI: 10.1038/17579

Quantum nature of the hydrogen bond
journal, April 2011

  • Li, X. -Z.; Walker, B.; Michaelides, A.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 16
  • DOI: 10.1073/pnas.1016653108

Investigation of Terahertz Vibration–Rotation Tunneling Spectra for the Water Octamer
journal, January 2013

  • Richardson, Jeremy O.; Wales, David J.; Althorpe, Stuart C.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 32
  • DOI: 10.1021/jp311306a

Communication: Isotopic effects on tunneling motions in the water trimer
journal, February 2016

  • Videla, Pablo E.; Rossky, Peter J.; Laria, D.
  • The Journal of Chemical Physics, Vol. 144, Issue 6
  • DOI: 10.1063/1.4941701

Hydrogen bond network rearrangement dynamics in water clusters: Effects of intermolecular vibrational excitation on tunneling rates
journal, August 2017

  • Cole, William T. S.; Saykally, Richard J.
  • The Journal of Chemical Physics, Vol. 147, Issue 6
  • DOI: 10.1063/1.4997046

Characterization of the TIP4P-Ew water model: Vapor pressure and boiling point
journal, November 2005

  • Horn, Hans W.; Swope, William C.; Pitera, Jed W.
  • The Journal of Chemical Physics, Vol. 123, Issue 19
  • DOI: 10.1063/1.2085031

Works referencing / citing this record:

Isomerism of the Aniline Trimer
journal, October 2018

  • Pérez, Cristóbal; León, Iker; Lesarri, Alberto
  • Angewandte Chemie, Vol. 130, Issue 46
  • DOI: 10.1002/ange.201808602

Micro-solvation of CO in water: infrared spectra and structural calculations for (D 2 O) 2 –CO and (D 2 O) 3 –CO
journal, January 2019

  • Barclay, A. J.; Pietropolli Charmet, A.; Michaelian, K. H.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 48
  • DOI: 10.1039/c9cp05480d

Isomerism of the Aniline Trimer
text, January 2018

  • Perez Cuadrado, Cristobal; León, Iker; Lesarri, Alberto
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-00279

Isomerism of the Aniline Trimer
journal, October 2018

  • Pérez, Cristóbal; León, Iker; Lesarri, Alberto
  • Angewandte Chemie International Edition, Vol. 57, Issue 46
  • DOI: 10.1002/anie.201808602