DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 μ m lasers

Abstract

Collisionless shock acceleration of protons and C6+ ions has been achieved by the interaction of a 1020 W/cm2, 1 μm laser with a near-critical density plasma. Ablation of the initially solid density target by a secondary laser allows for systematic control of the plasma profile. This enables the production of beams with peaked spectra with energies of 10 – 18 MeV/amu and energy spreads of 10%–20% with up to 3 × 109 particles within these narrow spectral features. The narrow energy spread and similar velocity of ion species with different charge-to-mass ratios are consistent with acceleration by the moving potential of a shock wave. Particle-in-cell simulations show shock accelerated beams of protons and C6+ ions with energy distributions consistent with the experiments. In conclusion, simulations further indicate the plasma profile determines the trade-off between the beam charge and energy and that with additional target optimization narrow energy spread beams exceeding 100 MeV/amu can be produced using the same laser conditions.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Univ. of California, Los Angeles, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1479144
Alternate Identifier(s):
OSTI ID: 1490380; OSTI ID: 1525470; OSTI ID: 1772299; OSTI ID: 1835897
Report Number(s):
LLNL-JRNL-738085
Journal ID: ISSN 2469-9888; PRABCJ; 103401
Grant/Contract Number:  
AC52-07NA27344; AC02-76SF00515; SC0010064; NA0001944; 15-LW-095; FWP 100237; FWP 100182; FWP 100331; SCW1575-1; NA0002950; NA0003873; 1734315; RGPIN-2014-05736
Resource Type:
Published Article
Journal Name:
Physical Review Accelerators and Beams
Additional Journal Information:
Journal Name: Physical Review Accelerators and Beams Journal Volume: 21 Journal Issue: 10; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; collisionless shock in plasma; high intensity laser-plasma interactions; laser driven ion acceleration

Citation Formats

Pak, A., Kerr, S., Lemos, N., Link, A., Patel, P., Albert, F., Divol, L., Pollock, B. B., Haberberger, D., Froula, D., Gauthier, M., Glenzer, S. H., Longman, A., Manzoor, L., Fedosejevs, R., Tochitsky, S., Joshi, C., and Fiuza, F. Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1     μ m lasers. United States: N. p., 2018. Web. doi:10.1103/PhysRevAccelBeams.21.103401.
Pak, A., Kerr, S., Lemos, N., Link, A., Patel, P., Albert, F., Divol, L., Pollock, B. B., Haberberger, D., Froula, D., Gauthier, M., Glenzer, S. H., Longman, A., Manzoor, L., Fedosejevs, R., Tochitsky, S., Joshi, C., & Fiuza, F. Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1     μ m lasers. United States. https://doi.org/10.1103/PhysRevAccelBeams.21.103401
Pak, A., Kerr, S., Lemos, N., Link, A., Patel, P., Albert, F., Divol, L., Pollock, B. B., Haberberger, D., Froula, D., Gauthier, M., Glenzer, S. H., Longman, A., Manzoor, L., Fedosejevs, R., Tochitsky, S., Joshi, C., and Fiuza, F. Thu . "Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1     μ m lasers". United States. https://doi.org/10.1103/PhysRevAccelBeams.21.103401.
@article{osti_1479144,
title = {Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1     μ m lasers},
author = {Pak, A. and Kerr, S. and Lemos, N. and Link, A. and Patel, P. and Albert, F. and Divol, L. and Pollock, B. B. and Haberberger, D. and Froula, D. and Gauthier, M. and Glenzer, S. H. and Longman, A. and Manzoor, L. and Fedosejevs, R. and Tochitsky, S. and Joshi, C. and Fiuza, F.},
abstractNote = {Collisionless shock acceleration of protons and C6+ ions has been achieved by the interaction of a 1020 W/cm2, 1 μm laser with a near-critical density plasma. Ablation of the initially solid density target by a secondary laser allows for systematic control of the plasma profile. This enables the production of beams with peaked spectra with energies of 10 – 18 MeV/amu and energy spreads of 10%–20% with up to 3 × 109 particles within these narrow spectral features. The narrow energy spread and similar velocity of ion species with different charge-to-mass ratios are consistent with acceleration by the moving potential of a shock wave. Particle-in-cell simulations show shock accelerated beams of protons and C6+ ions with energy distributions consistent with the experiments. In conclusion, simulations further indicate the plasma profile determines the trade-off between the beam charge and energy and that with additional target optimization narrow energy spread beams exceeding 100 MeV/amu can be produced using the same laser conditions.},
doi = {10.1103/PhysRevAccelBeams.21.103401},
journal = {Physical Review Accelerators and Beams},
number = 10,
volume = 21,
place = {United States},
year = {Thu Oct 25 00:00:00 EDT 2018},
month = {Thu Oct 25 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (Color online) a)Experimental setup. A near-critical density target is created by first irradiating a Mylar foil with an ablation laser. After the target has expanded for a time $\tau$ , a high-intensity ps duration laser pulse is focused onto the target to produce the electrostatic shock wave. Acceleratedmore » ions are measured by the imaging magnetic spectrometer (IMS) and Thomson parabola (TP). TP measurements indicate the majority of accelerated ions are C6+/O8+. Accelerated electrons are measured by a permanent magnet electron spectrometer. Radiochromic film (RCF) was used to measure a portion of the spatial beam profile. Orthogonal to the target, a probe laser was used to measure the target expansion. Accelerated proton spectra shown for b) an unablated foil, and c-e) at different time delays from consecutive shots. The inferred peak ne of the target and laser a0 are also denoted. Only signal > 4× the background variation is shown.« less

Save / Share:

Works referenced in this record:

Plasma dynamics near critical density inferred from direct measurements of laser hole boring
journal, June 2016


A compact solution for ion beam therapy with laser accelerated protons
journal, April 2014


Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids
journal, January 2000


Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices
journal, August 2008


Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas
journal, December 2015

  • Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10170

An imaging proton spectrometer for short-pulse laser plasma experiments
journal, October 2010

  • Chen, Hui; Hazi, A. U.; van Maren, R.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3483212

Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam
journal, September 2003


Solitary versus shock wave acceleration in laser-plasma interactions
journal, April 2012

  • Macchi, Andrea; Nindrayog, Amritpal Singh; Pegoraro, Francesco
  • Physical Review E, Vol. 85, Issue 4
  • DOI: 10.1103/PhysRevE.85.046402

Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime
journal, August 2008


Monoenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock
journal, January 2011


Laser-Driven Shock Acceleration of Monoenergetic Ion Beams
journal, November 2012


Magnetic Reconnection and Plasma Dynamics in Two-Beam Laser-Solid Interactions
journal, December 2006


Laser acceleration of quasi-monoenergetic MeV ion beams
journal, January 2006

  • Hegelich, B. M.; Albright, B. J.; Cobble, J.
  • Nature, Vol. 439, Issue 7075
  • DOI: 10.1038/nature04400

Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line
journal, August 2016


Spectral Modification of Shock Accelerated Ions Using a Hydrodynamically Shaped Gas Target
journal, August 2015


Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility
journal, May 2017


Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
journal, August 2017


Equation-of-State Measurement of Dense Plasmas Heated With Fast Protons
journal, July 2008


Ion acceleration from laser-driven electrostatic shocks
journal, May 2013

  • Fiuza, F.; Stockem, A.; Boella, E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801526

Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids
journal, October 2000


Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime
journal, April 2004


Laser-driven proton scaling laws and new paths towards energy increase
journal, December 2005

  • Fuchs, J.; Antici, P.; d’Humières, E.
  • Nature Physics, Vol. 2, Issue 1
  • DOI: 10.1038/nphys199

Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons
journal, February 2006


Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses
journal, December 2009


Proton Shock Acceleration in Laser-Plasma Interactions
journal, January 2004


Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams
journal, July 2016


Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

Fast ignition with laser-driven proton and ion beams
journal, April 2014


Ion Acceleration in Multispecies Targets Driven by Intense Laser Radiation Pressure
journal, November 2012


Evolution of a density disturbance in a collisionless plasma
journal, January 2014


Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Ion acceleration in short-laser-pulse interaction with solid foils
journal, November 2005

  • Tikhonchuk, V. T.; Andreev, A. A.; Bochkarev, S. G.
  • Plasma Physics and Controlled Fusion, Vol. 47, Issue 12B
  • DOI: 10.1088/0741-3335/47/12B/S69

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

High-repetition-rate ( kHz) targets and optics from liquid microjets for high-intensity laser–plasma interactions
journal, January 2019

  • George, K. M.; Morrison, J. T.; Feister, S.
  • High Power Laser Science and Engineering, Vol. 7
  • DOI: 10.1017/hpl.2019.35

Effect of a weak ion collisionality on the dynamics of kinetic electrostatic shocks
journal, February 2019

  • Sundström, Andréas; Juno, James; TenBarge, Jason M.
  • Journal of Plasma Physics, Vol. 85, Issue 1
  • DOI: 10.1017/s0022377819000023

Proton acceleration in a laser-induced relativistic electron vortex
journal, July 2019


Laser-ion acceleration using mixed compositions: Tailoring the target for each species
journal, December 2019

  • Stark, D. J.; Yin, L.; Albright, B. J.
  • Physics of Plasmas, Vol. 26, Issue 12
  • DOI: 10.1063/1.5121430

All-optical cascaded ion acceleration in segmented tubes driven by multiple independent laser pulses
journal, September 2019


Beam quality improvement in the later stage of radiation pressure acceleration
journal, January 2020


Laser-Plasma Accelerated Protons: Energy Increase in Gas-Mixtures Using High Mass Number Atomic Species
journal, August 2019

  • Levato, Tadzio; Goncalves, Leonardo V.; Giannini, Vincenzo
  • Fluids, Vol. 4, Issue 3
  • DOI: 10.3390/fluids4030150

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.