DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity

Abstract

Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H3S [Tc = 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH5, UH6, U2H13, UH7, UH8, U2H17, and UH9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H8 cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH7, UH8, and three different phases of UH5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-Tc superconductor is UH7, predicted to be thermodynamically stable at pressures above 22 GPa (with Tc = 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it has Tc = 57 to 66 K).

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [6];  [7]; ORCiD logo [8]; ORCiD logo [8];  [1]
  1. Dukhov Research Institute of Automatics (VNIIA), Moscow (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation)
  2. Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Skolkovo Institute of Science and Technology, Moscow (Russian Federation)
  3. Chinese Academy of Sciences (CAS) (China); Carnegie Inst. of Washington, Washington, DC (United States)
  4. Dukhov Research Institute of Automatics (VNIIA), Moscow (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Skolkovo Institute of Science and Technology, Moscow (Russian Federation)
  5. Carnegie Inst. of Washington, Washington, DC (United States); GFZ German Research Center for Geosciences (Germany)
  6. Carnegie Inst. of Washington, Washington, DC (United States); Univ. of Chicago, IL (United States)
  7. Chinese Academy of Sciences (CAS) (China)
  8. Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); Chinese Academy of Sciences; Russian Science Foundation
OSTI Identifier:
1479026
Grant/Contract Number:  
AC02-06CH11357; FG02-94ER14466; EAR-1634415; 11674330; 11504382; 11604342; 21473211; 2011T2J20; YZ201524; 6-13-10459
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 10; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
ENGLISH
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, and Yanilkin, Alexey V. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. United States: N. p., 2018. Web. doi:10.1126/sciadv.aat9776.
Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, & Yanilkin, Alexey V. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. United States. https://doi.org/10.1126/sciadv.aat9776
Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, and Yanilkin, Alexey V. Fri . "Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity". United States. https://doi.org/10.1126/sciadv.aat9776. https://www.osti.gov/servlets/purl/1479026.
@article{osti_1479026,
title = {Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity},
author = {Kruglov, Ivan A. and Kvashnin, Alexander G. and Goncharov, Alexander F. and Oganov, Artem R. and Lobanov, Sergey S. and Holtgrewe, Nicholas and Jiang, Shuqing and Prakapenka, Vitali B. and Greenberg, Eran and Yanilkin, Alexey V.},
abstractNote = {Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H3S [Tc = 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH5, UH6, U2H13, UH7, UH8, U2H17, and UH9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H8 cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH7, UH8, and three different phases of UH5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-Tc superconductor is UH7, predicted to be thermodynamically stable at pressures above 22 GPa (with Tc = 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it has Tc = 57 to 66 K).},
doi = {10.1126/sciadv.aat9776},
journal = {Science Advances},
number = 10,
volume = 4,
place = {United States},
year = {Fri Oct 12 00:00:00 EDT 2018},
month = {Fri Oct 12 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Actinium Hydrides AcH 10 , AcH 12 , and AcH 16 as High-Temperature Conventional Superconductors
journal, March 2018

  • Semenok, Dmitrii V.; Kvashnin, Alexander G.; Kruglov, Ivan A.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 8
  • DOI: 10.1021/acs.jpclett.8b00615

Transition temperature of strong-coupled superconductors reanalyzed
journal, August 1975


Structure of phase III of solid hydrogen
journal, May 2007

  • Pickard, Chris J.; Needs, Richard J.
  • Nature Physics, Vol. 3, Issue 7
  • DOI: 10.1038/nphys625

Critical temperature of metallic hydrogen at a pressure of 500 GPa
journal, October 2016


Separation of hydrogen isotopes with uranium hydride
journal, January 1982


New developments in evolutionary structure prediction algorithm USPEX
journal, April 2013

  • Lyakhov, Andriy O.; Oganov, Artem R.; Stokes, Harold T.
  • Computer Physics Communications, Vol. 184, Issue 4
  • DOI: 10.1016/j.cpc.2012.12.009

Behavior of actinide dioxides under pressure:  U O 2 and Th O 2
journal, July 2004


X-ray diffraction in the pulsed laser heated diamond anvil cell
journal, November 2010

  • Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.
  • Review of Scientific Instruments, Vol. 81, Issue 11
  • DOI: 10.1063/1.3499358

Coexistence of superconductivity and ferromagnetism in URhGe
journal, October 2001

  • Aoki, Dai; Huxley, Andrew; Ressouche, Eric
  • Nature, Vol. 413, Issue 6856
  • DOI: 10.1038/35098048

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium
journal, September 2008


Experimental and Theoretical Evidence for the Formation of Several Uranium Hydride Molecules
journal, February 1997

  • Souter, Philip F.; Kushto, Gary P.; Andrews, Lester
  • Journal of the American Chemical Society, Vol. 119, Issue 7
  • DOI: 10.1021/ja9630809

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


The Structure of Uranium Hydride and Deuteride 1
journal, July 1947

  • Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 69, Issue 7
  • DOI: 10.1021/ja01199a043

The Hydrogen Positions in Uranium Hydride by Neutron Diffraction 1
journal, September 1951

  • Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 73, Issue 9
  • DOI: 10.1021/ja01153a035

Uranium at high pressure from first principles
journal, September 2011


Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
journal, November 2014

  • Duan, Defang; Liu, Yunxian; Tian, Fubo
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06968

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Structural behavior of α-uranium with pressures to 100 GPa
journal, April 2003


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011

  • Oganov, Artem R.; Lyakhov, Andriy O.; Valle, Mario
  • Accounts of Chemical Research, Vol. 44, Issue 3
  • DOI: 10.1021/ar1001318

The Formation of Uranium Hydride 1
journal, October 1947

  • Burke, Joseph E.; Smith, Cyril Stanley
  • Journal of the American Chemical Society, Vol. 69, Issue 10
  • DOI: 10.1021/ja01202a073

Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

Superconductivity on the border of itinerant-electron ferromagnetism in UGe2
journal, August 2000

  • Saxena, S. S.; Agarwal, P.; Ahilan, K.
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020500

Kinetics of the reaction between water and uranium hydride prepared under conditions relevant to uranium storage
journal, February 2017


Pyrophoric behaviour of uranium hydride and uranium powders
journal, January 2010


A New Form of Uranium Hydride 1
journal, January 1954

  • Mulford, R. N. R.; Ellinger, F. H.; Zachariasen, W. H.
  • Journal of the American Chemical Society, Vol. 76, Issue 1
  • DOI: 10.1021/ja01630a094

Separation of hydrogen isotopes with uranium hydride
journal, January 1982


Uranium at high pressure from first principles
journal, September 2011


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011

  • Oganov, Artem R.; Lyakhov, Andriy O.; Valle, Mario
  • Accounts of Chemical Research, Vol. 44, Issue 3
  • DOI: 10.1021/ar1001318

The Hydrogen Positions in Uranium Hydride by Neutron Diffraction 1
journal, September 1951

  • Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 73, Issue 9
  • DOI: 10.1021/ja01153a035

Experimental and Theoretical Evidence for the Formation of Several Uranium Hydride Molecules
journal, February 1997

  • Souter, Philip F.; Kushto, Gary P.; Andrews, Lester
  • Journal of the American Chemical Society, Vol. 119, Issue 7
  • DOI: 10.1021/ja9630809

Superconductivity on the border of itinerant-electron ferromagnetism in UGe2
journal, August 2000

  • Saxena, S. S.; Agarwal, P.; Ahilan, K.
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020500

Coexistence of superconductivity and ferromagnetism in URhGe
journal, October 2001

  • Aoki, Dai; Huxley, Andrew; Ressouche, Eric
  • Nature, Vol. 413, Issue 6856
  • DOI: 10.1038/35098048

Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

The electron-phonon interaction and the physical properties of metals
journal, April 1997


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Ferromagnetism and Superconductivity in Uranium Compounds
journal, January 2012

  • Aoki, Dai; Flouquet, Jacques
  • Journal of the Physical Society of Japan, Vol. 81, Issue 1
  • DOI: 10.1143/jpsj.81.011003

Works referencing / citing this record:

Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice
journal, October 2019

  • Salke, Nilesh P.; Davari Esfahani, M. Mahdi; Zhang, Youjun
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-12326-y

Predicting novel superconducting hydrides using machine learning approaches
journal, April 2020


Magnetic measurements on micron-size samples under high pressure using designed NV centers
text, January 2018


Discovery of new boron-rich chalcogenides: orthorhombic B6X (X = S, Se)
text, January 2019


High-$T_c$ ternary metal hydrides, YKH$_{12}$ and LaKH$_{12}$, discovered by machine learning
preprint, January 2021