DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting

Abstract

We report the discovery of a new class of oxides – poly-cation oxides (PCOs) – that consist of multiple cations and can thermochemically split water in a two-step cycle to produce hydrogen (H 2 ) and oxygen (O 2 ).

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., Stanford, CA (United States); Pohang Univ. of Science and Technology (POSTECH), Pohang (South Korea)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
OSTI Identifier:
1476172
Alternate Identifier(s):
OSTI ID: 1441058
Grant/Contract Number:  
AC02-76SF00515; N00014-17-1-2918
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 8; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zhai, Shang, Rojas, Jimmy, Ahlborg, Nadia, Lim, Kipil, Toney, Michael F., Jin, Hyungyu, Chueh, William C., and Majumdar, Arun. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. United States: N. p., 2018. Web. doi:10.1039/c8ee00050f.
Zhai, Shang, Rojas, Jimmy, Ahlborg, Nadia, Lim, Kipil, Toney, Michael F., Jin, Hyungyu, Chueh, William C., & Majumdar, Arun. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. United States. https://doi.org/10.1039/c8ee00050f
Zhai, Shang, Rojas, Jimmy, Ahlborg, Nadia, Lim, Kipil, Toney, Michael F., Jin, Hyungyu, Chueh, William C., and Majumdar, Arun. Fri . "The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting". United States. https://doi.org/10.1039/c8ee00050f. https://www.osti.gov/servlets/purl/1476172.
@article{osti_1476172,
title = {The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting},
author = {Zhai, Shang and Rojas, Jimmy and Ahlborg, Nadia and Lim, Kipil and Toney, Michael F. and Jin, Hyungyu and Chueh, William C. and Majumdar, Arun},
abstractNote = {We report the discovery of a new class of oxides – poly-cation oxides (PCOs) – that consist of multiple cations and can thermochemically split water in a two-step cycle to produce hydrogen (H 2 ) and oxygen (O 2 ).},
doi = {10.1039/c8ee00050f},
journal = {Energy & Environmental Science},
number = 8,
volume = 11,
place = {United States},
year = {Fri Jun 08 00:00:00 EDT 2018},
month = {Fri Jun 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 79 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic of two-step thermochemical water splitting (TWS) using a poly-cation oxide (PCO). In a typical two-step TWS, a metal oxide (MOxl becomes thermally-reduced at a higher temperature, $T$H, and releases 02 to produce MO$z$, (z < x). The reduced oxide is cooled to a lower temperature, $T$L, wheremore » it is oxidized by water to produce H2 as it returns to MOx,. In PCOs. a reversible phase swing between rocksalt (reduced) and spine! (oxidized) phases occurs during thermochemical cycling. The rocksalt-to-spinel ratio becomes larger at $T$H compared to that at h$T$L.« less

Save / Share:

Works referenced in this record:

Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle
journal, April 1995


Dopant Incorporation in Ceria for Enhanced Water-Splitting Activity during Solar Thermochemical Hydrogen Generation
journal, June 2012

  • Le Gal, Alex; Abanades, Stéphane
  • The Journal of Physical Chemistry C, Vol. 116, Issue 25
  • DOI: 10.1021/jp302146c

Oxygen nonstoichiometry of Ce1−ySmyO2−0.5y−x (y=0.1, 0.2)
journal, November 1999


Solar hydrogen generation with H2O/ZnO/MnFe2O4 system
journal, January 2004


Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ
journal, April 2009


Catalytic Function of IrO x in the Two-Step Thermochemical CO 2 -Splitting Reaction at High Temperatures
journal, January 2016


A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles
journal, February 2015

  • Agrafiotis, Christos; Roeb, Martin; Sattler, Christian
  • Renewable and Sustainable Energy Reviews, Vol. 42
  • DOI: 10.1016/j.rser.2014.09.039

Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H 2 O and CO 2
journal, March 2013

  • Scheffe, Jonathan R.; Weibel, David; Steinfeld, Aldo
  • Energy & Fuels, Vol. 27, Issue 8
  • DOI: 10.1021/ef301923h

The Hydrogen Economy
journal, December 2004

  • Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.
  • Physics Today, Vol. 57, Issue 12
  • DOI: 10.1063/1.1878333

Low-temperature, manganese oxide-based, thermochemical water splitting cycle
journal, May 2012

  • Xu, B.; Bhawe, Y.; Davis, M. E.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 24
  • DOI: 10.1073/pnas.1206407109

A thermodynamic study of nonstoichiometric cerium dioxide
journal, November 1975

  • Panlener, R. J.; Blumenthal, R. N.; Garnier, J. E.
  • Journal of Physics and Chemistry of Solids, Vol. 36, Issue 11, p. 1213-1222
  • DOI: 10.1016/0022-3697(75)90192-4

Critical limitations on the efficiency of two-step thermochemical cycles
journal, January 2016


Giant onsite electronic entropy enhances the performance of ceria for water splitting
journal, August 2017


Thermodynamic Investigation of the Redox Properties of Ceria−Zirconia Solid Solutions
journal, August 2006

  • Kim, Taeyoon; Vohs, John M.; Gorte, Raymond J.
  • Industrial & Engineering Chemistry Research, Vol. 45, Issue 16
  • DOI: 10.1021/ie0511478

Clean hydrogen production with the Cu–Cl cycle – Progress of international consortium, II: Simulations, thermochemical data and materials
journal, December 2011


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Evidence for Entropy Effects in the Reduction of Ceria−Zirconia Solutions
journal, October 2006

  • Shah, Parag R.; Kim, Taeyoon; Zhou, Gong
  • Chemistry of Materials, Vol. 18, Issue 22
  • DOI: 10.1021/cm061374f

Entropy-stabilized oxides
journal, September 2015

  • Rost, Christina M.; Sachet, Edward; Borman, Trent
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9485

Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
journal, January 2008

  • Diver, Richard B.; Miller, James E.; Allendorf, Mark D.
  • Journal of Solar Energy Engineering, Vol. 130, Issue 4, Article No. 041001
  • DOI: 10.1115/1.2969781

Perovskite La 0.6 Sr 0.4 Cr 1−x Co x O 3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature
journal, January 2015

  • Bork, A. H.; Kubicek, M.; Struzik, M.
  • Journal of Materials Chemistry A, Vol. 3, Issue 30
  • DOI: 10.1039/C5TA02519B

Modeling Thermochemical Solar-to-Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La,Sr)MnO 3
journal, September 2016

  • Bork, Alexander H.; Povoden-Karadeniz, Erwin; Rupp, Jennifer L. M.
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601086

Thermodynamic evaluation and modeling of the Fe–Co–O system
journal, January 2004


Ceria–Zirconia Solid Solutions (Ce 1– x Zr x O 2−δ , x ≤ 0.2) for Solar Thermochemical Water Splitting: A Thermodynamic Study
journal, October 2014

  • Hao, Yong; Yang, Chih-Kai; Haile, Sossina M.
  • Chemistry of Materials, Vol. 26, Issue 20
  • DOI: 10.1021/cm503131p

Thermodynamic modeling of the cerium–yttrium–oxygen system
journal, October 2008


A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO 2 mitigation
journal, July 2010

  • Chueh, William C.; Haile, Sossina M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1923
  • DOI: 10.1098/rsta.2010.0114

Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3−δ (M=Ti, Mn and Fe)
journal, November 2008

  • Oishi, Masatsugu; Yashiro, Keiji; Sato, Kazuhisa
  • Journal of Solid State Chemistry, Vol. 181, Issue 11
  • DOI: 10.1016/j.jssc.2008.08.015

Design principles of perovskites for solar-driven thermochemical splitting of CO 2
journal, January 2017

  • Ezbiri, Miriam; Takacs, Michael; Stolz, Boris
  • Journal of Materials Chemistry A, Vol. 5, Issue 29
  • DOI: 10.1039/C7TA02081C

Thermodynamic Investigation of the Redox Properties for Ceria−Hafnia, Ceria−Terbia, and Ceria−Praseodymia Solid Solutions
journal, August 2008

  • Zhou, Gong; Gorte, Raymond J.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 32
  • DOI: 10.1021/jp804089w

Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production
journal, January 2013

  • McDaniel, Anthony H.; Miller, Elizabeth C.; Arifin, Darwin
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41372a

Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
journal, October 2013

  • Miller, James E.; McDaniel, Anthony H.; Allendorf, Mark D.
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300469
  • DOI: 10.1002/aenm.201300469

Thermochemical Cycles for High-Temperature Solar Hydrogen Production
journal, October 2007

  • Kodama, Tatsuya; Gokon, Nobuyuki
  • Chemical Reviews, Vol. 107, Issue 10, p. 4048-4077
  • DOI: 10.1021/cr050188a

Thermodynamic modelling of the cerium–oxygen system
journal, April 2006

  • Zinkevich, M.; Djurovic, D.; Aldinger, F.
  • Solid State Ionics, Vol. 177, Issue 11-12, p. 989-1001
  • DOI: 10.1016/j.ssi.2006.02.044

Progress of international hydrogen production network for the thermochemical Cu–Cl cycle
journal, January 2013


CO 2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production
journal, March 2015

  • Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2037
  • DOI: 10.1098/rsta.2014.0177

Tunable thermodynamic activity of La x Sr 1−x Mn y Al 1−y O 3−δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis
journal, January 2017

  • Ezbiri, M.; Takacs, M.; Theiler, D.
  • Journal of Materials Chemistry A, Vol. 5, Issue 8
  • DOI: 10.1039/C6TA06644E

Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite
journal, May 2005


Solar thermochemical production of hydrogen––a review
journal, May 2005


Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review
journal, September 2014


A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe 2 O 4 (M = Mn, Co, Ni)
journal, May 2009

  • Carta, D.; Casula, M. F.; Falqui, A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 20
  • DOI: 10.1021/jp901077c

Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries
journal, January 2013

  • Centi, Gabriele; Quadrelli, Elsje Alessandra; Perathoner, Siglinda
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee00056g

High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
journal, December 2010


The electrical conductivity and thermodynamic behavior of SrO-doped nonstoichiometric cerium dioxide
journal, January 1976


Thermochemical Cycles for High-Temperature Solar Hydrogen Production
journal, December 2007


Oxygen Nonstoichiometry and Defect Equilibrium in La 2-x Sr x NiO 4+δ
journal, August 2009

  • Nakamura, Takashi; Yashiro, Keiji; Sato, Kazuhisa
  • ECS Transactions, Vol. 16, Issue 44
  • DOI: 10.1149/1.3224756

Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
conference, October 2008

  • Diver, Richard B.; Miller, James E.; Allendorf, Mark D.
  • ASME 2006 International Solar Energy Conference
  • DOI: 10.1115/isec2006-99147

Design principles of perovskites for solar-driven thermochemical splitting of CO2
text, January 2017


The hydrogen economy
journal, January 2006

  • Crabtree, George W.; Dresselhaus, Mildred S.; V. Buchanan, And Michelle
  • IEEE Engineering Management Review, Vol. 34, Issue 4
  • DOI: 10.1109/emr.2006.261397

Works referencing / citing this record:

Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides
journal, October 2018

  • Braun, Jeffrey L.; Rost, Christina M.; Lim, Mina
  • Advanced Materials, Vol. 30, Issue 51
  • DOI: 10.1002/adma.201805004

Modifying La 0.6 Sr 0.4 MnO 3 Perovskites with Cr Incorporation for Fast Isothermal CO 2 ‐Splitting Kinetics in Solar‐Driven Thermochemical Cycles
journal, June 2019

  • Carrillo, Alfonso J.; Bork, Alexander H.; Moser, Thierry
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201803886

High-entropy ceramics
journal, February 2020


Sr- and Co-doped LaGaO 3−δ with high O 2 and H 2 yields in solar thermochemical water splitting
journal, January 2019

  • Chen, Zhenpan; Jiang, Qingqing; Cheng, Feng
  • Journal of Materials Chemistry A, Vol. 7, Issue 11
  • DOI: 10.1039/c8ta11957k

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.