skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps

Abstract

Experimental investigation of the light intensity distributions of a low-pressure glow discharge is carried out in several pairs of geometrically similar plane-parallel gaps, of which the aspect ratios and the products of the linear dimension and the gas pressure are the same. The discharge images are captured using a Charge Coupled Device camera, from which the corresponding axial light intensity distributions are presented. Based on the obtained light intensity distributions, the thicknesses of cathode fall layers were identified by measuring the distance between the peak glow position and the cathode boundary. The influence of the discharge current on the light intensity distributions on the geometrically similar gaps is also investigated. It was found that, for discharges in each pair of geometrically similar gaps, the reduced cathode fall thicknesses are observed to be identical when the discharge currents are the same. In conclusion, the similarity relation of the cathode fall thickness is validated for low-pressure glow discharges in gaps for different aspect ratios.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [2];  [3];  [3]
  1. Tsinghua Univ., Beijing (China). Dept. of Electrical Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering, and Dept. of Electrical and Computer Engineering
  2. Tsinghua Univ., Beijing (China). Dept. of Electrical Engineering
  3. East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering, and Dept. of Electrical and Computer Engineering
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1474307
Alternate Identifier(s):
OSTI ID: 1373989
Grant/Contract Number:  
SC0001939
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 42 ENGINEERING

Citation Formats

Fu, Yangyang, Wang, Xinxin, Zou, Xiaobing, Yang, Shuo, Verboncoeur, John P., and Christlieb, Andrew J. Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps. United States: N. p., 2017. Web. doi:10.1063/1.4997425.
Fu, Yangyang, Wang, Xinxin, Zou, Xiaobing, Yang, Shuo, Verboncoeur, John P., & Christlieb, Andrew J. Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps. United States. doi:10.1063/1.4997425.
Fu, Yangyang, Wang, Xinxin, Zou, Xiaobing, Yang, Shuo, Verboncoeur, John P., and Christlieb, Andrew J. Fri . "Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps". United States. doi:10.1063/1.4997425. https://www.osti.gov/servlets/purl/1474307.
@article{osti_1474307,
title = {Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps},
author = {Fu, Yangyang and Wang, Xinxin and Zou, Xiaobing and Yang, Shuo and Verboncoeur, John P. and Christlieb, Andrew J.},
abstractNote = {Experimental investigation of the light intensity distributions of a low-pressure glow discharge is carried out in several pairs of geometrically similar plane-parallel gaps, of which the aspect ratios and the products of the linear dimension and the gas pressure are the same. The discharge images are captured using a Charge Coupled Device camera, from which the corresponding axial light intensity distributions are presented. Based on the obtained light intensity distributions, the thicknesses of cathode fall layers were identified by measuring the distance between the peak glow position and the cathode boundary. The influence of the discharge current on the light intensity distributions on the geometrically similar gaps is also investigated. It was found that, for discharges in each pair of geometrically similar gaps, the reduced cathode fall thicknesses are observed to be identical when the discharge currents are the same. In conclusion, the similarity relation of the cathode fall thickness is validated for low-pressure glow discharges in gaps for different aspect ratios.},
doi = {10.1063/1.4997425},
journal = {Physics of Plasmas},
number = 8,
volume = 24,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Validity of the similarity law for the glow discharges in non-plane-parallel gaps
journal, October 2014


Effect of distribution of electric field on low-pressure gas breakdown
journal, February 2017

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 24, Issue 2
  • DOI: 10.1063/1.4976848

A new similarity law and its application to plasma research
journal, March 1993

  • Bashlov, N. L.; Milenin, V. M.; Panasjuk, G. Ju
  • Journal of Physics D: Applied Physics, Vol. 26, Issue 3
  • DOI: 10.1088/0022-3727/26/3/010

Influence of the transverse dimension on the structure and properties of dc glow discharges
journal, October 2010

  • Bogdanov, E. A.; Adams, S. F.; Demidov, V. I.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3486525

Applicability of Child–Langmuir collision laws for describing a dc cathode sheath in N 2 O
journal, December 2013

  • Lisovskiy, V. A.; Artushenko, E. P.; Yegorenkov, V. D.
  • Journal of Plasma Physics, Vol. 80, Issue 3
  • DOI: 10.1017/S0022377813001281

High-Frequency Discharges: I Breakdown Mechanism and Similarity Relationship
journal, July 1951

  • Jones, F. Llewellyn; Morgan, G. D.
  • Proceedings of the Physical Society. Section B, Vol. 64, Issue 7
  • DOI: 10.1088/0370-1301/64/7/303

Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure
journal, July 2014


Low-pressure gas breakdown in uniform dc electric field
journal, October 2000

  • Lisovskiy, V. A.; Yakovin, S. D.; Yegorenkov, V. D.
  • Journal of Physics D: Applied Physics, Vol. 33, Issue 21
  • DOI: 10.1088/0022-3727/33/21/310

Validating the collision-dominated Child–Langmuir law for a dc discharge cathode sheath in an undergraduate laboratory
journal, September 2009


Similarity law for rf breakdown
journal, March 2008


Research on Similarity Law of Glow Discharge in Argon at Low Pressure by Numerical Simulation
journal, June 2014

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobin
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 6
  • DOI: 10.1109/TPS.2014.2319106

Studies of the Properties of the Hollow Cathode Glow Discharge in Helium and Neon
journal, October 1964

  • Sturges, D. J.; Oskam, H. J.
  • Journal of Applied Physics, Vol. 35, Issue 10
  • DOI: 10.1063/1.1713124

Conditions for the applicability of the geometrical similarity law to impulse breakdown in gases
journal, August 2010

  • Dekic, Sasa; Osmokrovic, Predrag; Vujisic, Milos
  • IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, Issue 4
  • DOI: 10.1109/TDEI.2010.5539689

Large-gap AC coplanar plasma display cells: macro-cell experiments and 3-D simulations
journal, June 2003

  • Ouyang, J.; Callegari, Th.; Caillier, B.
  • IEEE Transactions on Plasma Science, Vol. 31, Issue 3
  • DOI: 10.1109/TPS.2003.812343

Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory
journal, September 2012


Similarity of gas discharge in low-pressure argon gaps between two plane-parallel electrodes
journal, July 2016


Intersection of Paschen's curves for argon
journal, September 2016

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962673

The Child-Langmuir collision laws for the cathode sheath of glow discharge in nitrogen
journal, May 2014


Scaling and the design of miniaturized chemical-analysis systems
journal, July 2006

  • Janasek, Dirk; Franzke, Joachim; Manz, Andreas
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05059

Positive streamers in air and nitrogen of varying density: experiments on similarity laws
journal, November 2008


Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure
journal, November 2007

  • Luo, Haiyun; Liang, Zhuo; Lv, Bo
  • Applied Physics Letters, Vol. 91, Issue 22
  • DOI: 10.1063/1.2819073

Axial emission profiles and apparent secondary electron yield in abnormal glow discharges in argon
journal, October 2002

  • Marić, D.; Kutasi, K.; Malović, G.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 21, Issue 1
  • DOI: 10.1140/epjd/e2002-00179-x

Role of nonlocal ionization in formation of the short glow discharge
journal, August 2008


Measurements and modelling of axial emission profiles in abnormal glow discharges in argon: heavy-particle processes
journal, October 2003


A modified Paschen law for the initiation of a dc glow discharge in inert gases
journal, June 2000

  • Lisovskii, V. A.; Yakovin, S. D.
  • Technical Physics, Vol. 45, Issue 6
  • DOI: 10.1134/1.1259709

The Validity of the Similarity Law for the Electrical Breakdown of $\hbox{SF}_{6}$ Gas
journal, February 2007

  • Osmokrovic, Predrag; Zivic, Tamara; Loncar, Boris
  • IEEE Transactions on Plasma Science, Vol. 35, Issue 1
  • DOI: 10.1109/TPS.2006.889293

Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes
journal, January 2011

  • Tarasenko, Victor F.; Baksht, Evgenii Kh.; Burahenko, Alexander G.
  • Applied Physics Letters, Vol. 98, Issue 2
  • DOI: 10.1063/1.3540504

Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure
journal, February 2015

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907660

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mesyats, Gennadii A.</span> </li> <li> Physics-Uspekhi, Vol. 49, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1070/PU2006v049n10ABEH006118" class="text-muted" target="_blank" rel="noopener noreferrer">10.1070/PU2006v049n10ABEH006118<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.physleta.2011.03.035" target="_blank" rel="noopener noreferrer" class="name">Dc breakdown of low pressure gas in long tubes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-05-01">May 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lisovskiy, V. A.; Koval, V. A.; Yegorenkov, V. D.</span> </li> <li> Physics Letters A, Vol. 375, Issue 19</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.physleta.2011.03.035" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.physleta.2011.03.035<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.2823605" target="_blank" rel="noopener noreferrer" class="name">Radial evolution of dielectric barrier glowlike discharge in helium at atmospheric pressure<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-12-03">December 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Luo, Haiyun; Liang, Zhuo; Lv, Bo</span> </li> <li> Applied Physics Letters, Vol. 91, Issue 23</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.2823605" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.2823605<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0022-3727/31/20/016" target="_blank" rel="noopener noreferrer" class="name">Similarity laws for glow discharges with cathodes of metal and an electrolyte<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-10-21">October 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mezei, P.; Cserfalvi, T.; Jánossy, M.</span> </li> <li> Journal of Physics D: Applied Physics, Vol. 31, Issue 20</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0022-3727/31/20/016" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0022-3727/31/20/016<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (33)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/22408142-cathode-fall-thickness-abnormal-glow-discharges-between-parallel-plane-electrodes-different-radii-low-pressure" itemprop="url">Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Luo, Haiyun</span> ; <span class="author">Zou, Xiaobing</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.4907660" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22408142" data-product-type="Journal Article" data-product-subtype="AC" >10.1063/1.4907660</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1610600-gas-breakdown-its-scaling-law-microgaps-multiple-concentric-cathode-protrusions" itemprop="url">Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Zhang, Peng</span> ; <span class="author">Krek, Janez</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied Physics Letters</span> </span> </div> <div class="abstract">This work reports gas breakdown characteristics in microgaps with multiple concentric protrusions on the cathode in the transition from the Townsend to the subnormal glow discharge regime, using a two-dimensional hydrodynamic model. The effects of the protrusion aspect ratio, height, and protrusion spacing on the breakdown voltage are investigated. The results show that when the protrusion spacing is small, the shielding effect can play a more important role in the breakdown voltage rather than the protrusion aspect ratio; the breakdown voltage is more sensitive to the protrusion height and can be assessed by the shortest gap distance. Increasing the protrusion<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> spacing decreases the shielding effect, which lowers the breakdown voltage in both low- and high-pressure regimes. It is found that the breakdown scaling law still holds in geometrically similar microgaps with multiple cathode protrusions despite the electric field distortion.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 7<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.5077015" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1610600" data-product-type="Journal Article" data-product-subtype="AM" >10.1063/1.5077015</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1610600" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1610600" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21277034-numerical-analysis-two-homogeneous-discharge-modes-atmospheric-pressure-self-consistent-model" itemprop="url">Numerical analysis of two homogeneous discharge modes at atmospheric pressure with a self-consistent model</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Qi, Wang</span> ; <span class="author">Jizhong, Sun</span> ; <span class="author">Dezhen, Wang</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">Two homogeneous discharge modes, Townsend discharge and glow discharge, can be obtained in dielectric barrier discharges at atmospheric pressure when an external voltage with an appropriate frequency is applied to the electrodes. In this paper, a one-dimensional self-consistent model was used to investigate the transition and the difference in characteristics of these two modes. The simulation results showed that the spatiotemporal distributions of the electron temperature in the two discharge modes differed noticeably. In the glow discharge, the electron temperature in the cathode fall was several times higher than that in any of the other regions; in contrast, the electron<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> temperature in the Townsend discharge was approximately spatially uniform. The electron energy distribution functions (EEDFs) at different locations in the discharge gap at the discharge current peaks were given and analyzed. In the glow discharge, the EEDF in the cathode fall region contained the largest percentage of high energy in all regions, and the majority of the electrons in the negative glow region possessed very low energy. However in the Townsend discharge, the EEDFs at different locations were similar to each other. In addition, both the discharge current density and the voltage drop on the discharge gas versus the applied voltage were also examined. It was found that when the applied voltage was over a critical value, the Townsend discharge turned into the glow discharge, the peak magnitude of the discharge current density increased abruptly. The maximum of the discharge current density was nearly a linear function of the applied voltage, while the voltage drop on the discharge gas was approximately a constant. Also, we found that there was a minimum of the applied voltage leading to the transition from the Townsend discharge to the glow discharge as the discharge gap spacing varied.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.3109665" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21277034" data-product-type="Journal Article" data-product-subtype="" >10.1063/1.3109665</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21448970-similarity-laws-cathode-directed-streamers-gaps-inhomogeneous-field-elevated-air-pressures" itemprop="url">Similarity laws for cathode-directed streamers in gaps with an inhomogeneous field at elevated air pressures</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Bolotov, O V</span> ; <span class="author">Golota, V I</span> ; <span class="author">Kadolin, B B</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Plasma Physics Reports</span> </span> </div> <div class="abstract">Results are presented from experimental studies of cathode-directed streamers in the gap closure regime without a transition into spark breakdown. Spatiotemporal, electrodynamic, and spectroscopic characteristics of streamer discharges in air at different pressures were studied. Similarity laws for streamer discharges were formulated. These laws allow one to compare the discharge current characteristics and streamer propagation dynamics at different pressures. Substantial influence of gas photoionization on the deviations from the similarity laws was revealed. The existence of a pressure range in which the discharges develop in a similar way was demonstrated experimentally. In particular, for fixed values of the product pd<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> and discharge voltage U, the average streamer velocity is also fixed. It is found that, although the similarity laws are violated in the interstreamer pause of the discharge, the average discharge current and the product of the pressure and the streamer repetition period remain the same at different pressures. The radiation spectra of the second positive system of nitrogen (the C{sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions) in a wavelength range of 300-400 nm at air pressures of 1-3 atm were recorded. It is shown that, in the entire pressure range under study, the profiles of the observed radiation bands practically remain unchanged and the relative intensities of the spectral lines corresponding to the {sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions are preserved.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1134/S1063780X10110097" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21448970" data-product-type="Journal Article" data-product-subtype="" >10.1134/S1063780X10110097</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/22408144-physical-processes-ruling-atmospheric-pressure-air-glow-discharge-operating-intermediate-current-regime" itemprop="url">On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Prevosto, L., E-mail: prevosto@waycom.com.ar</span> ; <span class="author">Mancinelli, B.</span> ; <span class="author">Chamorro, J. C.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.4907661" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22408144" data-product-type="Journal Article" data-product-subtype="AC" >10.1063/1.4907661</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200423.1532.css" rel="stylesheet"> <script src="/pages/js/pages.200423.1532.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200423.1532.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.200423.1532 --> </html>