DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions

Abstract

Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25 degrees C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basicmore » screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in <= 90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [3];  [3];  [2];  [2]; ORCiD logo [4];  [2]; ORCiD logo [1]
  1. Univ. of Toronto, ON (Canada)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Univ. of Southern California, Los Angeles, CA (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Southern California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH) - National Institute of General Medical Sciences; National Institutes of Health (NIH) - National Cancer Institute
OSTI Identifier:
1473603
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Protocols
Additional Journal Information:
Journal Volume: 13; Journal Issue: 2; Journal ID: ISSN 1754-2189
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Broecker, Jana, Morizumi, Takefumi, Ou, Wei-Lin, Klingel, Viviane, Kuo, Anling, Kissick, David J., Ishchenko, Andrii, Lee, Ming-Yue, Xu, Shenglan, Makarov, Oleg, Cherezov, Vadim, Ogata, Craig M., and Ernst, Oliver P. High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions. United States: N. p., 2018. Web. doi:10.1038/nprot.2017.135.
Broecker, Jana, Morizumi, Takefumi, Ou, Wei-Lin, Klingel, Viviane, Kuo, Anling, Kissick, David J., Ishchenko, Andrii, Lee, Ming-Yue, Xu, Shenglan, Makarov, Oleg, Cherezov, Vadim, Ogata, Craig M., & Ernst, Oliver P. High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions. United States. https://doi.org/10.1038/nprot.2017.135
Broecker, Jana, Morizumi, Takefumi, Ou, Wei-Lin, Klingel, Viviane, Kuo, Anling, Kissick, David J., Ishchenko, Andrii, Lee, Ming-Yue, Xu, Shenglan, Makarov, Oleg, Cherezov, Vadim, Ogata, Craig M., and Ernst, Oliver P. Thu . "High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions". United States. https://doi.org/10.1038/nprot.2017.135. https://www.osti.gov/servlets/purl/1473603.
@article{osti_1473603,
title = {High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions},
author = {Broecker, Jana and Morizumi, Takefumi and Ou, Wei-Lin and Klingel, Viviane and Kuo, Anling and Kissick, David J. and Ishchenko, Andrii and Lee, Ming-Yue and Xu, Shenglan and Makarov, Oleg and Cherezov, Vadim and Ogata, Craig M. and Ernst, Oliver P.},
abstractNote = {Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25 degrees C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in <= 90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.},
doi = {10.1038/nprot.2017.135},
journal = {Nature Protocols},
number = 2,
volume = 13,
place = {United States},
year = {Thu Jan 04 00:00:00 EST 2018},
month = {Thu Jan 04 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In-plate protein crystallization, in situ ligand soaking and X-ray diffraction
journal, August 2011

  • le Maire, Albane; Gelin, Muriel; Pochet, Sylvie
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 9
  • DOI: 10.1107/S0907444911023249

X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization
journal, March 2017

  • Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Sun, Chang
  • Biomicrofluidics, Vol. 11, Issue 2
  • DOI: 10.1063/1.4981818

Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
journal, August 2015

  • Mueller, C.; Marx, A.; Epp, S. W.
  • Structural Dynamics, Vol. 2, Issue 5
  • DOI: 10.1063/1.4928706

One-Micron Beams for Macromolecular Crystallography at GM∕CA-CAT
conference, January 2010

  • Yoder, D. W.; Sanishvili, R.; Vogt, S.
  • SRI 2009, 10TH INTERNATIONAL CONFERENCE ON RADIATION INSTRUMENTATION, AIP Conference Proceedings
  • DOI: 10.1063/1.3463229

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline
journal, September 2006

  • Beteva, A.; Cipriani, F.; Cusack, S.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 10
  • DOI: 10.1107/S0907444906032859

ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature
journal, July 2013

  • Pinker, Franziska; Brun, Mathieu; Morin, Pierre
  • Crystal Growth & Design, Vol. 13, Issue 8
  • DOI: 10.1021/cg301757g

G Protein–Coupled Receptor Rhodopsin
journal, June 2006


EIGER: Next generation single photon counting detector for X-ray applications
journal, September 2011

  • Dinapoli, Roberto; Bergamaschi, Anna; Henrich, Beat
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 650, Issue 1
  • DOI: 10.1016/j.nima.2010.12.005

Collaboration gets the most out of software
journal, September 2013


Biocrystallography: Past, present, future
journal, June 2010

  • Giegé, Richard; Sauter, Claude
  • HFSP Journal, Vol. 4, Issue 3-4
  • DOI: 10.2976/1.3369281

Applications of thin-film sandwich crystallization platforms
journal, March 2016

  • Axford, Danny; Aller, Pierre; Sanchez-Weatherby, Juan
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 72, Issue 4
  • DOI: 10.1107/S2053230X16004386

The PILATUS 1M detector
journal, February 2006

  • Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.
  • Journal of Synchrotron Radiation, Vol. 13, Issue 2
  • DOI: 10.1107/S0909049505038665

In situ X-ray data collection from highly sensitive crystals of Pseudomonas putida PtxS in complex with DNA
journal, October 2012

  • Pineda-Molina, E.; Daddaoua, A.; Krell, T.
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 68, Issue 11
  • DOI: 10.1107/S1744309112028540

Opsin, a Structural Model for Olfactory Receptors?
journal, August 2013

  • Park, Jung Hee; Morizumi, Takefumi; Li, Yafang
  • Angewandte Chemie International Edition, Vol. 52, Issue 42
  • DOI: 10.1002/anie.201302374

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000061

Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions
journal, July 2012


Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography
journal, July 2016

  • Oghbaey, Saeed; Sarracini, Antoine; Ginn, Helen M.
  • Acta Crystallographica Section D Structural Biology, Vol. 72, Issue 8, p. 944-955
  • DOI: 10.1107/S2059798316010834

A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals
journal, October 2016

  • Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin
  • Crystal Growth & Design, Vol. 16, Issue 11
  • DOI: 10.1021/acs.cgd.6b00950

Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins
journal, November 2003


CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films
journal, September 2012

  • Cipriani, Florent; Röwer, Martin; Landret, Christophe
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 10
  • DOI: 10.1107/S0907444912031459

In situ serial Laue diffraction on a microfluidic crystallization device
journal, November 2014

  • Perry, Sarah L.; Guha, Sudipto; Pawate, Ashtamurthy S.
  • Journal of Applied Crystallography, Vol. 47, Issue 6
  • DOI: 10.1107/S1600576714023322

Crystallizing membrane proteins using lipidic mesophases
journal, April 2009


In situ data collection and structure refinement from microcapillary protein crystallization
journal, November 2005

  • Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan
  • Journal of Applied Crystallography, Vol. 38, Issue 6
  • DOI: 10.1107/S002188980502649X

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Crystal structure of the ligand-free G-protein-coupled receptor opsin
journal, June 2008

  • Park, Jung Hee; Scheerer, Patrick; Hofmann, Klaus Peter
  • Nature, Vol. 454, Issue 7201
  • DOI: 10.1038/nature07063

Detergents Destabilize the Cubic Phase of Monoolein: Implications for Membrane Protein Crystallization
journal, November 2003


Lipidic cubic phases: A novel concept for the crystallization of membrane proteins
journal, December 1996

  • Landau, E. M.; Rosenbusch, J. P.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 25
  • DOI: 10.1073/pnas.93.25.14532

Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam
journal, June 2009

  • Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.
  • Journal of The Royal Society Interface, Vol. 6, Issue suppl_5
  • DOI: 10.1098/rsif.2009.0142.focus

High-throughput crystallography for structural genomics☆
journal, October 2009


Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography
journal, July 2013

  • Foadi, James; Aller, Pierre; Alguel, Yilmaz
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 8
  • DOI: 10.1107/S0907444913012274

A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes
journal, January 2015

  • Caffrey, Martin
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 71, Issue 1, p. 3-18
  • DOI: 10.1107/S2053230X14026843

X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination
journal, September 2014

  • Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.
  • Crystal Growth & Design, Vol. 14, Issue 10
  • DOI: 10.1021/cg5011488

Structurally Enabled Discovery of Adenosine A 2A Receptor Antagonists
journal, June 2016


Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs
journal, February 2017


X-ray Diffraction of Protein Crystal Grown in a Nano-liter Scale Droplet in a Microchannel and Evaluation of Its Applicability
journal, January 2012

  • Maeki, Masatoshi; Yoshizuka, Saori; Yamaguchi, Hiroshi
  • Analytical Sciences, Vol. 28, Issue 1
  • DOI: 10.2116/analsci.28.65

Crystallization of soluble proteins in vapor diffusion for x-ray crystallography
journal, June 2007


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Chaotic Mixer for Microchannels
journal, January 2002


Acoustically Mounted Microcrystals Yield High-Resolution X-ray Structures
journal, May 2011

  • Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard
  • Biochemistry, Vol. 50, Issue 21
  • DOI: 10.1021/bi200549x

Diffusible Ligand All- trans -retinal Activates Opsin via a Palmitoylation-dependent Mechanism
journal, February 2000

  • Sachs, Kristina; Maretzki, Dieter; Meyer, Christoph K.
  • Journal of Biological Chemistry, Vol. 275, Issue 9
  • DOI: 10.1074/jbc.275.9.6189

Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination
journal, April 2003

  • Ng, Joseph D.; Gavira, José A.; Garcı́a-Ruı́z, Juan M.
  • Journal of Structural Biology, Vol. 142, Issue 1
  • DOI: 10.1016/S1047-8477(03)00052-2

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

History and Perspectives of A 2A Adenosine Receptor Antagonists as Potential Therapeutic Agents : A
journal, March 2015

  • Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R.
  • Medicinal Research Reviews, Vol. 35, Issue 4
  • DOI: 10.1002/med.21344

Application of In Situ Diffraction in High-Throughput Structure Determination Platforms
book, November 2014


How many drug targets are there?
journal, December 2006

  • Overington, John P.; Al-Lazikani, Bissan; Hopkins, Andrew L.
  • Nature Reviews Drug Discovery, Vol. 5, Issue 12
  • DOI: 10.1038/nrd2199

Combining `dry' co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography
journal, July 2015

  • Gelin, Muriel; Delfosse, Vanessa; Allemand, Frédéric
  • Acta Crystallographica Section D Biological Crystallography, Vol. 71, Issue 8
  • DOI: 10.1107/S1399004715010342

SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening
journal, April 2011

  • Bingel-Erlenmeyer, R.; Olieric, V.; Grimshaw, J. P. A.
  • Crystal Growth & Design, Vol. 11, Issue 4
  • DOI: 10.1021/cg101375j

Lipidic cubic phase technologies for membrane protein structural studies
journal, August 2011


In situ macromolecular crystallography using microbeams
journal, April 2012

  • Axford, Danny; Owen, Robin L.; Aishima, Jun
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 5
  • DOI: 10.1107/S0907444912006749

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

A plug-based microfluidic system for dispensing lipidic cubic phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases
journal, October 2009


A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering
journal, May 2015

  • Roedig, P.; Vartiainen, I.; Duman, R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10451

Opsin, a Structural Model for Olfactory Receptors?
journal, August 2013

  • Park, Jung Hee; Morizumi, Takefumi; Li, Yafang
  • Angewandte Chemie, Vol. 125, Issue 42
  • DOI: 10.1002/ange.201302374

Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs
journal, February 2017


PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome
journal, December 2019


Synthetic antibodies against BRIL as universal fiducial marks for single−particle cryoEM structure determination of membrane proteins
journal, March 2020

  • Mukherjee, Somnath; Erramilli, Satchal K.; Ammirati, Mark
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-15363-0

Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation
journal, February 2021


Overview of the CCP4 suite and current developments.
text, January 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.52322

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Works referencing / citing this record:

In situ serial crystallography for rapid de novo membrane protein structure determination
journal, August 2018


In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson’s Disease
journal, June 2018