DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound

Abstract

Abstract Fast, robust, and cost‐effective means of detecting spectroscopically inactive metal species are necessary for field detection and applications within a variety of areas including industry and the nuclear safeguards fields. A sensor based on spectroelectrochemistry is an excellent candidate to meet these needs as it provides improved selectivity for specifically quantifying metal ions by simultaneously monitoring at least two physio‐chemical properties. Ruthenium was chosen as a model system for this study due to its spectroscopic and electrochemical characteristics as well as its relevance within the fuel cycle and industrial fields. Aqueous Ru displays multiple redox couples in which all available oxidation states have poor sensitivity for detection by visible absorption spectroscopy because of the low molar absorptivities. Ru can, however, form complexes with sensitizing ligands such as 2,2′‐bipyridine, where the resulting [Ru(ligand) 3 ] 2+ complex displays a red luminescence with a high quantum yield of emission. This significantly improves detection limits for Ru and allows for the spectroelectrochemical detection of the otherwise hard‐to‐detect metal ion. This work explores the in‐situ generation of Ru(bpy) 3 complexes in simulated field samples and their subsequent spectroelectrochemical sensing using our sensor methodology.

Authors:
 [1];  [2];  [3];  [1];  [2]
  1. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99352, Department of Chemistry Washington State University Pullman WA 99163
  2. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99352
  3. Department of Chemistry University of Cincinnati Cincinnati OH 45221
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1471128
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Electroanalysis
Additional Journal Information:
Journal Name: Electroanalysis Journal Volume: 30 Journal Issue: 11; Journal ID: ISSN 1040-0397
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Lines, Amanda M., Warner, Joshua D., Heineman, William R., Clark, Sue B., and Bryan, Samuel A. Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound. Germany: N. p., 2018. Web. doi:10.1002/elan.201800427.
Lines, Amanda M., Warner, Joshua D., Heineman, William R., Clark, Sue B., & Bryan, Samuel A. Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound. Germany. https://doi.org/10.1002/elan.201800427
Lines, Amanda M., Warner, Joshua D., Heineman, William R., Clark, Sue B., and Bryan, Samuel A. Fri . "Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound". Germany. https://doi.org/10.1002/elan.201800427.
@article{osti_1471128,
title = {Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound},
author = {Lines, Amanda M. and Warner, Joshua D. and Heineman, William R. and Clark, Sue B. and Bryan, Samuel A.},
abstractNote = {Abstract Fast, robust, and cost‐effective means of detecting spectroscopically inactive metal species are necessary for field detection and applications within a variety of areas including industry and the nuclear safeguards fields. A sensor based on spectroelectrochemistry is an excellent candidate to meet these needs as it provides improved selectivity for specifically quantifying metal ions by simultaneously monitoring at least two physio‐chemical properties. Ruthenium was chosen as a model system for this study due to its spectroscopic and electrochemical characteristics as well as its relevance within the fuel cycle and industrial fields. Aqueous Ru displays multiple redox couples in which all available oxidation states have poor sensitivity for detection by visible absorption spectroscopy because of the low molar absorptivities. Ru can, however, form complexes with sensitizing ligands such as 2,2′‐bipyridine, where the resulting [Ru(ligand) 3 ] 2+ complex displays a red luminescence with a high quantum yield of emission. This significantly improves detection limits for Ru and allows for the spectroelectrochemical detection of the otherwise hard‐to‐detect metal ion. This work explores the in‐situ generation of Ru(bpy) 3 complexes in simulated field samples and their subsequent spectroelectrochemical sensing using our sensor methodology.},
doi = {10.1002/elan.201800427},
journal = {Electroanalysis},
number = 11,
volume = 30,
place = {Germany},
year = {Fri Sep 14 00:00:00 EDT 2018},
month = {Fri Sep 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/elan.201800427

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hexaaquoruthenium(II)
journal, December 1965


Evaluation of tris(4,7-diphenyl-1,10-phenanthrolinedisulfonate)ruthenium(II) as a chemiluminescence reagent
journal, February 2009

  • McDermott, Geoffrey P.; Zammit, Elizabeth M.; Bowen, Elspeth K.
  • Analytica Chimica Acta, Vol. 634, Issue 2
  • DOI: 10.1016/j.aca.2008.12.030

Luminescence from Lanthanide(3+) Ions in Solution: Luminescence from Lanthanide(3+) Ions in Solution
journal, March 2005


Trans isomers of ruthenium(II) complexes containing two bipyridine ligands
journal, January 1982

  • Walsh, Jerry L.; Durham, Bill.
  • Inorganic Chemistry, Vol. 21, Issue 1
  • DOI: 10.1021/ic00131a060

Simultaneous control of spectroscopic and electrochemical properties in functionalised electrochemiluminescent tris(2,2′-bipyridine)ruthenium(ii) complexes
journal, January 2011

  • Barbante, Gregory J.; Hogan, Conor F.; Wilson, David J. D.
  • The Analyst, Vol. 136, Issue 7
  • DOI: 10.1039/c0an00952k

Hazards and control of ruthenium in the nuclear fuel cycle
journal, January 1978


The Electrode Potential of Ruthenium(IV) and Its Lower Oxidation States
journal, July 1962

  • Atwood, Donald K.; Vries, Thomas De.
  • Journal of the American Chemical Society, Vol. 84, Issue 14
  • DOI: 10.1021/ja00873a001

Tris(2,2′-bipyridyl)ruthenium( ii ) chemiluminescence
journal, January 2006

  • Gorman, Bree A.; Francis, Paul S.; Barnett, Neil W.
  • The Analyst, Vol. 131, Issue 5
  • DOI: 10.1039/B518454A

Time-Resolved Luminescence Spectroelectrochemistry at Screen-Printed Electrodes: Following the Redox-Dependent Fluorescence of [Ru(bpy) 3 ] 2+
journal, September 2017

  • Martín-Yerga, Daniel; Pérez-Junquera, Alejandro; Hernández-Santos, David
  • Analytical Chemistry, Vol. 89, Issue 20
  • DOI: 10.1021/acs.analchem.7b01734

On the multiplicity of the emitting state of ruthenium(II) complexes
journal, May 1968


Assessing a Spectroelectrochemical Sensor’s Performance for Detecting [Ru(bpy)3]2+ in Natural and Treated Water
journal, June 2012

  • Abu, Eme A.; Bryan, Samuel A.; Seliskar, Carl J.
  • Electroanalysis, Vol. 24, Issue 7
  • DOI: 10.1002/elan.201200143

Multiple state emission from rhodium(I) and iridium(I) complexes
journal, January 1981


Charge-transfer luminescence from ruthenium(II) complexes containing tridentate ligands
journal, January 1981


Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device. 1. Demonstration of Concept with Ferricyanide
journal, September 1997

  • Shi, Yining; Slaterbeck, Andrew F.; Seliskar, Carl J.
  • Analytical Chemistry, Vol. 69, Issue 18
  • DOI: 10.1021/ac970322u

Electrogenerated Chemiluminescence. 59. Rhenium Complexes
journal, January 1996

  • Richter, Mark M.; Debad, Jeff D.; Striplin, Durwin R.
  • Analytical Chemistry, Vol. 68, Issue 24
  • DOI: 10.1021/ac9606160

Electron Transfer Kinetics of Tris(1,10-phenanthroline)ruthenium(II) Electrooxidation in Aprotic Solvents
journal, April 2000

  • Winkler, Krzysztof; McKnight, Novelette; Fawcett, W. Ronald
  • The Journal of Physical Chemistry B, Vol. 104, Issue 15
  • DOI: 10.1021/jp993547c

In Situ Quantification of [Re(CO) 3 ] + by Fluorescence Spectroscopy in Simulated Hanford Tank Waste
journal, January 2018

  • Branch, Shirmir D.; French, Amanda D.; Lines, Amanda M.
  • Environmental Science & Technology, Vol. 52, Issue 3
  • DOI: 10.1021/acs.est.7b04222

Oxidation of coordinated diamines in bis(2,2'-bipyridine) complexes of ruthenium
journal, January 1976

  • Brown, Gilbert M.; Weaver, Thomas Ray.; Keene, F. Richard.
  • Inorganic Chemistry, Vol. 15, Issue 1
  • DOI: 10.1021/ic50155a040

Charge-transfer excited states of ruthenium(II) complexes. II. Relation of level parameters to molecular structure
journal, November 1975

  • Hager, G. D.; Watts, R. J.; Crosby, G. A.
  • Journal of the American Chemical Society, Vol. 97, Issue 24
  • DOI: 10.1021/ja00857a014

spectro-electro-chemistry
journal, March 1978


Ruthenium(III) chloride in aqueous solution: electrochemical and spectral studies
journal, February 1986

  • Taqui Khan, M. M.; Ramachandraiah, G.; Rao, A. Prakash
  • Inorganic Chemistry, Vol. 25, Issue 5
  • DOI: 10.1021/ic00225a015

Luminescence from Transition‐Metal Complexes: Tris(2,2′‐bipyridine)‐ and Tris(1,10‐phenanthroline)Ruthenium(II)
journal, September 1965

  • Crosby, G. A.; Perkins, W. G.; Klassen, D. M.
  • The Journal of Chemical Physics, Vol. 43, Issue 5
  • DOI: 10.1063/1.1696960

Solution mixing and the emission of light in flow-cells for chemiluminescence detection
journal, January 2011

  • Terry, Jessica M.; Zammit, Elizabeth M.; Slezak, Teo
  • The Analyst, Vol. 136, Issue 5
  • DOI: 10.1039/C0AN00591F

Temperature dependence of the photophysical and photochemical properties of the tris(2,2'-bipyridyl)ruthenium(II) ion in aqueous solution
journal, August 1976

  • Van Houten, J.; Watts, R. J.
  • Journal of the American Chemical Society, Vol. 98, Issue 16
  • DOI: 10.1021/ja00432a028

The Potential of the Ruthenium(II)—Ruthenium(III) Couple 1
journal, October 1966

  • Buckley, R. R.; Mercer, E. E.
  • The Journal of Physical Chemistry, Vol. 70, Issue 10
  • DOI: 10.1021/j100882a014

An investigation of the mechanism of the Eu(III)/Eu(II) electrode reaction in the presence of edta
journal, November 1972

  • Kisova, L.; Sluyters-Rehbach, M.; Sluyters, J. H.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 40, Issue 1
  • DOI: 10.1016/S0022-0728(72)80123-2

Electron-transfer reactions involving the aquoruthenium(II)-aquoruthenium(III) couple
journal, June 1979

  • Bottcher, Wolfhart; Brown, Gilbert M.; Sutin, Norman
  • Inorganic Chemistry, Vol. 18, Issue 6
  • DOI: 10.1021/ic50196a008

Ruthenium complexes with diazabutadienes. 3. trans and cis Isomers of dichlorobis(diazabutadiene)ruthenium (RN:CR'CR':NR)2RuCl2
journal, August 1984

  • Tom Dieck, Heindirk; Kollvitz, Wolfgang; Kleinwaechter, Ingo
  • Inorganic Chemistry, Vol. 23, Issue 17
  • DOI: 10.1021/ic00185a027

Excited states of mixed-ligand chelates of ruthenium(II). Quantum yield and decay time measurements
journal, May 1981

  • Elfring, W. H.; Crosby, G. A.
  • Journal of the American Chemical Society, Vol. 103, Issue 10
  • DOI: 10.1021/ja00400a032

Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes
journal, May 2016

  • Lines, Amanda M.; Wang, Zheming; Clark, Sue B.
  • Electroanalysis, Vol. 28, Issue 9
  • DOI: 10.1002/elan.201600034

Synthesis, Photo-, and Electrochemistry of Ruthenium Bis(bipyridine) Complexes Comprising a N- heterocyclic Carbene Ligand
journal, April 2013

  • Leigh, Vivienne; Ghattas, Wadih; Lalrempuia, Ralte
  • Inorganic Chemistry, Vol. 52, Issue 9
  • DOI: 10.1021/ic400347r

Cis-trans photoisomerization in Ru(bpy)2(OH2)22+. Crystal structure of trans-[Ru(bpy)2(OH2)(OH)](ClO4)2
journal, January 1980

  • Durham, Bill; Wilson, Scott R.; Hodgson, Derek J.
  • Journal of the American Chemical Society, Vol. 102, Issue 2
  • DOI: 10.1021/ja00522a026

The Polarography of Ruthenium (IV) in Perchloric Acid Solutions
journal, June 1951

  • Niedrach, L. W.; Tevebaugh, A. D.
  • Journal of the American Chemical Society, Vol. 73, Issue 6
  • DOI: 10.1021/ja01150a119

Complexes derived from (RuNO) III and Ru IV
journal, January 1958


Spectroscopic Studies of Ruthenium(II) Complexes. Assignment of the Luminescence
journal, February 1968

  • Klassen, D. M.; Crosby, G. A.
  • The Journal of Chemical Physics, Vol. 48, Issue 4
  • DOI: 10.1063/1.1668922

The Determination of the Formulas of Aqueous Ruthenium(III) Species by Means of Ion-exchange Resin: Ru +3 , RuCl +2 and RuCl 2 +
journal, June 1958

  • Cady, Howard H.; Connick, Robert E.
  • Journal of the American Chemical Society, Vol. 80, Issue 11
  • DOI: 10.1021/ja01544a012

Spectroscopic characterization of complexes of ruthenium(II) and iridium(III) with 4,4'-diphenyl-2,2'-bipyridine and 4,7-diphenyl-1,10-phenanthroline
journal, June 1971

  • Crosby, G. A.; Watts, R. J.
  • Journal of the American Chemical Society, Vol. 93, Issue 13
  • DOI: 10.1021/ja00742a016

Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride
journal, April 1972

  • Tokel, Nurhan E.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 94, Issue 8
  • DOI: 10.1021/ja00763a056

Quantum efficiencies of transition-metal complexes. I. d-d Luminescence
journal, December 1970

  • Crosby, Glenn A.; Demas, James N.
  • Journal of the American Chemical Society, Vol. 92, Issue 25
  • DOI: 10.1021/ja00728a006

Infra-red Spectra of some Anhydrous Complex Cyanide Acids
journal, July 1963


Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species
journal, February 1985


Simultaneous Detection of Two Analytes Using a Spectroelectrochemical Sensor
journal, March 2010

  • Andria, Sara E.; Seliskar, Carl J.; Heineman, William R.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902243u

Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe) 3 ] 2+/+ (dmpe = 1,2- bis (dimethylphosphino)ethane) within a Charge-Selective Polymer Film
journal, March 2011

  • Chatterjee, Sayandev; Del Negro, Andrew S.; Edwards, Matthew K.
  • Analytical Chemistry, Vol. 83, Issue 5
  • DOI: 10.1021/ac1030368

Emission Spectroscopy of Ru(bpy) 2 dppz 2+ in Nafion. Probing the Chemical Environment in Cast Films
journal, January 1996

  • Sabatani, Eyal; Nikol, Hans D.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 118, Issue 5
  • DOI: 10.1021/ja9531790

Optical spectrum of hexaaquoruthenium(III) ion and its conjugate base
journal, August 1980


Bis(2,2′-bipyridine)ruthenium(II) complexes with imidazo[4,5-f ][1,10]-phenanthroline or 2-phenylimidazo[4,5-f  ][1,10]phenanthroline 
journal, January 1997

  • Wu, Jian-Zhong; Ye, Bao-Hui; Wang, Lei
  • Journal of the Chemical Society, Dalton Transactions, Issue 8
  • DOI: 10.1039/a605269j

Reaction of chloropentaaquoruthenium(III) with chromium(II). Binuclear intermediates, reduction of perchlorate, and the effect of vanadium(II)
journal, December 1969

  • Seewald, David; Sutin, Norman; Watkins, Kay O.
  • Journal of the American Chemical Society, Vol. 91, Issue 26
  • DOI: 10.1021/ja01054a019

Spectroelectrochemistry: The combination of optical and electrochemical techniques
journal, April 1983

  • Heineman, William R.
  • Journal of Chemical Education, Vol. 60, Issue 4
  • DOI: 10.1021/ed060p305