DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A manganese–hydrogen battery with potential for grid-scale energy storage

Abstract

Batteries including lithium-ion, lead–acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese–hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of ~1.3 V, a rate capability of 100 mA cm–2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of ~139 Wh kg–1 (volumetric energy density of ~210 Wh l–1), with the theoretical gravimetric energy density of ~174 Wh kg–1 (volumetric energy density of ~263 Wh l–1) in a 4 M MnSO4 electrolyte. In conclusion, the manganese–hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); Chinese Academy of Sciences (CAS) Key Lab of Nanosystem and Hierarchy Fabrication, Beijing (China)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1461183
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 3; Journal Issue: 5; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Chen, Wei, Li, Guodong, Pei, Allen, Li, Yuzhang, Liao, Lei, Wang, Hongxia, Wan, Jiayu, Liang, Zheng, Chen, Guangxu, Zhang, Hao, Wang, Jiangyan, and Cui, Yi. A manganese–hydrogen battery with potential for grid-scale energy storage. United States: N. p., 2018. Web. doi:10.1038/s41560-018-0147-7.
Chen, Wei, Li, Guodong, Pei, Allen, Li, Yuzhang, Liao, Lei, Wang, Hongxia, Wan, Jiayu, Liang, Zheng, Chen, Guangxu, Zhang, Hao, Wang, Jiangyan, & Cui, Yi. A manganese–hydrogen battery with potential for grid-scale energy storage. United States. https://doi.org/10.1038/s41560-018-0147-7
Chen, Wei, Li, Guodong, Pei, Allen, Li, Yuzhang, Liao, Lei, Wang, Hongxia, Wan, Jiayu, Liang, Zheng, Chen, Guangxu, Zhang, Hao, Wang, Jiangyan, and Cui, Yi. Mon . "A manganese–hydrogen battery with potential for grid-scale energy storage". United States. https://doi.org/10.1038/s41560-018-0147-7. https://www.osti.gov/servlets/purl/1461183.
@article{osti_1461183,
title = {A manganese–hydrogen battery with potential for grid-scale energy storage},
author = {Chen, Wei and Li, Guodong and Pei, Allen and Li, Yuzhang and Liao, Lei and Wang, Hongxia and Wan, Jiayu and Liang, Zheng and Chen, Guangxu and Zhang, Hao and Wang, Jiangyan and Cui, Yi},
abstractNote = {Batteries including lithium-ion, lead–acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese–hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of ~1.3 V, a rate capability of 100 mA cm–2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of ~139 Wh kg–1 (volumetric energy density of ~210 Wh l–1), with the theoretical gravimetric energy density of ~174 Wh kg–1 (volumetric energy density of ~263 Wh l–1) in a 4 M MnSO4 electrolyte. In conclusion, the manganese–hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.},
doi = {10.1038/s41560-018-0147-7},
journal = {Nature Energy},
number = 5,
volume = 3,
place = {United States},
year = {Mon Apr 30 00:00:00 EDT 2018},
month = {Mon Apr 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 221 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Nanostructured Mn-based oxides for electrochemical energy storage and conversion
journal, January 2015

  • Zhang, Kai; Han, Xiaopeng; Hu, Zhe
  • Chemical Society Reviews, Vol. 44, Issue 3
  • DOI: 10.1039/C4CS00218K

Lithium–antimony–lead liquid metal battery for grid-level energy storage
journal, September 2014


Manganese oxide-based materials as electrochemical supercapacitor electrodes
journal, January 2011

  • Wei, Weifeng; Cui, Xinwei; Chen, Weixing
  • Chem. Soc. Rev., Vol. 40, Issue 3
  • DOI: 10.1039/C0CS00127A

New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
journal, January 2014

  • Durst, J.; Siebel, A.; Simon, C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00440J

Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells
journal, May 2005

  • Yang, X. G.; Wang, C. Y.
  • Applied Physics Letters, Vol. 86, Issue 22
  • DOI: 10.1063/1.1941473

Development of Sodium-Sulfur Batteries
journal, July 2004


Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

The Chemistry of Redox-Flow Batteries
journal, June 2015

  • Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana
  • Angewandte Chemie International Edition, Vol. 54, Issue 34
  • DOI: 10.1002/anie.201410823

A Nickel Metal Hydride Battery for Electric Vehicles
journal, April 1993


Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities
journal, January 2013


Progress in electrical energy storage system: A critical review
journal, March 2009


Rechargeable batteries with aqueous electrolytes
journal, May 2000


Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry
journal, January 2015

  • Biswal, Avijit; Chandra Tripathy, Bankim; Sanjay, Kali
  • RSC Advances, Vol. 5, Issue 72
  • DOI: 10.1039/C5RA05892A

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

The Role of Energy Storage in Development of Smart Grids
journal, June 2011


On the Solubility of Manganous Sulphate
journal, November 1900


Liquid Metal Batteries: Past, Present, and Future
journal, November 2012

  • Kim, Hojong; Boysen, Dane A.; Newhouse, Jocelyn M.
  • Chemical Reviews, Vol. 113, Issue 3
  • DOI: 10.1021/cr300205k

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Charge Storage Mechanism of MnO 2 Electrode Used in Aqueous Electrochemical Capacitor
journal, August 2004

  • Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm049649j

Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
journal, April 2016


Electricity storage for intermittent renewable sources
journal, January 2012

  • Rugolo, Jason; Aziz, Michael J.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee02542f

Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes
journal, January 2010

  • Sheng, Wenchao; Gasteiger, Hubert A.; Shao-Horn, Yang
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3483106

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994


A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
journal, June 2013

  • Popczun, Eric J.; McKone, James R.; Read, Carlos G.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403440e

Transition metal phosphide catalysts for hydrogen oxidation reaction
journal, August 2009


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

Works referencing / citing this record:

Fully Solar-Powered Uninterrupted Overall Water-Splitting Systems
journal, January 2019

  • Zhang, Qichong; He, Bing; Tang, Lei
  • Advanced Functional Materials, Vol. 29, Issue 9
  • DOI: 10.1002/adfm.201808889

Graphitic Nanocarbon with Engineered Defects for High‐Performance Potassium‐Ion Battery Anodes
journal, June 2019

  • Zhang, Wenli; Ming, Jun; Zhao, Wenli
  • Advanced Functional Materials, Vol. 29, Issue 35
  • DOI: 10.1002/adfm.201903641

A High‐Energy Aqueous Aluminum‐Manganese Battery
journal, September 2019

  • He, Shiman; Wang, Jie; Zhang, Xu
  • Advanced Functional Materials, Vol. 29, Issue 45
  • DOI: 10.1002/adfm.201905228

Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Proton‐Regulated Kinetics and Superior Dendrite‐Free Property
journal, November 2019


Commercialization of Lithium Battery Technologies for Electric Vehicles
journal, June 2019

  • Zeng, Xiaoqiao; Li, Matthew; Abd El‐Hady, Deia
  • Advanced Energy Materials, Vol. 9, Issue 27
  • DOI: 10.1002/aenm.201900161

A Novel Dendrite‐Free Mn 2+ /Zn 2+ Hybrid Battery with 2.3 V Voltage Window and 11000‐Cycle Lifespan
journal, June 2019


A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism
journal, July 2019

  • Liang, Guojin; Mo, Funian; Li, Hongfei
  • Advanced Energy Materials, Vol. 9, Issue 32
  • DOI: 10.1002/aenm.201901838

Membrane‐Free Zn/MnO 2 Flow Battery for Large‐Scale Energy Storage
journal, January 2020


Solvent‐Free Synthesis of Thin, Flexible, Nonflammable Garnet‐Based Composite Solid Electrolyte for All‐Solid‐State Lithium Batteries
journal, March 2020

  • Jiang, Taoli; He, Pingge; Wang, Guoxu
  • Advanced Energy Materials, Vol. 10, Issue 12
  • DOI: 10.1002/aenm.201903376

An Electrolytic Zn–MnO 2 Battery for High‐Voltage and Scalable Energy Storage
journal, May 2019


An Electrolytic Zn–MnO 2 Battery for High‐Voltage and Scalable Energy Storage
journal, June 2019

  • Chao, Dongliang; Zhou, Wanhai; Ye, Chao
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201904174

Recent Progress in Polysulfide Redox‐Flow Batteries
journal, June 2019

  • Zhang, Sanpei; Guo, Wenjuan; Yang, Fengchang
  • Batteries & Supercaps, Vol. 2, Issue 7
  • DOI: 10.1002/batt.201900056

Water in Rechargeable Multivalent-Ion Batteries: An Electrochemical Pandora's Box
journal, January 2019


MnO 2 Nanosheet‐Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zinc‐Ion Batteries
journal, March 2020


Biomimetic organohydrogel electrolytes for high‐environmental adaptive energy storage devices
journal, December 2019

  • Mo, Funian; Liang, Guojin; Wang, Donghong
  • EcoMat, Vol. 1, Issue 1
  • DOI: 10.1002/eom2.12008

An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@Ni 0.67 Co 0.33 S‐Based Hybrid Supercapacitors
journal, March 2019

  • Nagaraju, Goli; Sekhar, S. Chandra; Ramulu, Bhimanaboina
  • Small, Vol. 15, Issue 16
  • DOI: 10.1002/smll.201805418

Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts
journal, August 2019


Multifunctional inorganic nanomaterials for energy applications
journal, January 2020

  • Wang, Huilin; Liang, Xitong; Wang, Jiutian
  • Nanoscale, Vol. 12, Issue 1
  • DOI: 10.1039/c9nr07008g

A novel aqueous sodium–manganese battery system for energy storage
journal, January 2019

  • Feng, Yazhi; Zhang, Qiu; Liu, Shuang
  • Journal of Materials Chemistry A, Vol. 7, Issue 14
  • DOI: 10.1039/c9ta00474b

A generalized approach for selecting solar energy system configurations for a wide range of applications
journal, January 2019

  • Doron, Pinchas; Karni, Jacob; Slocum, Alexander
  • MRS Energy & Sustainability, Vol. 6
  • DOI: 10.1557/mre.2019.10

Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High‐Energy‐Density and Durable Aqueous Zinc‐Ion Battery
journal, February 2019

  • Fang, Guozhao; Zhu, Chuyu; Chen, Minghui
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201808375