skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons

Abstract

A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. In this paper, by using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm -1) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. Finally, the present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [8];  [8];  [9];  [10];  [1];  [11];  [1];  [3];  [1];  [3];  [1]
  1. Univ. of Cologne (Germany). Inst. of Physics
  2. Univ. of Cologne (Germany). Inst. of Physics; Saint Petersburg State Univ. (Russian Federation); Leibniz Inst. for Solid State and Materials Research (IFW Dresden), Dresden (Germany)
  3. Univ. of California, Berkeley, CA (United States)
  4. Inst. for Research in Fundamental Sciences (IPM), Tehran (Iran). School of Nano Science
  5. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy; Lund Univ. (Sweden). MAX IV Lab.
  6. Lund Univ. (Sweden). MAX IV Lab.
  7. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
  8. Forschungszentrum Julich (Germany). Peter Grünberg Inst. Inst. for Advanced Simulation
  9. Univ. of Cologne (Germany). Inst. for Theoretical Physics
  10. Univ. of Cologne (Germany). Inst. of Physics; Univ. of Vienna (Austria). Faculty of Physics; Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science
  11. Helmholtz Center for Materials and Energy, Berlin (Germany). Electron Storage Ring BESSY II
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); European Research Council (ERC); German Research Foundation (DFG); Russian Science Foundation; Swedish Research Council (SRC)
OSTI Identifier:
1461116
Grant/Contract Number:  
SC0010409; 0939514; 648589; 321319; CRC1238; GR 3708/2-1; 14-13-00747
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Volume: 3; Journal Issue: 4; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ARPES; charge transfer doping; graphene; graphene nanoribbons; Raman

Citation Formats

Senkovskiy, Boris V., Fedorov, Alexander V., Haberer, Danny, Farjam, Mani, Simonov, Konstantin A., Preobrajenski, Alexei B., Martensson, Niels, Atodiresei, Nicolae, Caciuc, Vasile, Blugel, Stefan, Rosch, Achim, Verbitskiy, Nikolay I., Hell, Martin, Evtushinsky, Daniil V., German, Raphael, Marangoni, Tomas, van Loosdrecht, Paul H. M., Fischer, Felix R., and Gruneis, Alexander. Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons. United States: N. p., 2017. Web. doi:10.1002/aelm.201600490.
Senkovskiy, Boris V., Fedorov, Alexander V., Haberer, Danny, Farjam, Mani, Simonov, Konstantin A., Preobrajenski, Alexei B., Martensson, Niels, Atodiresei, Nicolae, Caciuc, Vasile, Blugel, Stefan, Rosch, Achim, Verbitskiy, Nikolay I., Hell, Martin, Evtushinsky, Daniil V., German, Raphael, Marangoni, Tomas, van Loosdrecht, Paul H. M., Fischer, Felix R., & Gruneis, Alexander. Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons. United States. doi:10.1002/aelm.201600490.
Senkovskiy, Boris V., Fedorov, Alexander V., Haberer, Danny, Farjam, Mani, Simonov, Konstantin A., Preobrajenski, Alexei B., Martensson, Niels, Atodiresei, Nicolae, Caciuc, Vasile, Blugel, Stefan, Rosch, Achim, Verbitskiy, Nikolay I., Hell, Martin, Evtushinsky, Daniil V., German, Raphael, Marangoni, Tomas, van Loosdrecht, Paul H. M., Fischer, Felix R., and Gruneis, Alexander. Fri . "Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons". United States. doi:10.1002/aelm.201600490. https://www.osti.gov/servlets/purl/1461116.
@article{osti_1461116,
title = {Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons},
author = {Senkovskiy, Boris V. and Fedorov, Alexander V. and Haberer, Danny and Farjam, Mani and Simonov, Konstantin A. and Preobrajenski, Alexei B. and Martensson, Niels and Atodiresei, Nicolae and Caciuc, Vasile and Blugel, Stefan and Rosch, Achim and Verbitskiy, Nikolay I. and Hell, Martin and Evtushinsky, Daniil V. and German, Raphael and Marangoni, Tomas and van Loosdrecht, Paul H. M. and Fischer, Felix R. and Gruneis, Alexander},
abstractNote = {A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. In this paper, by using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm-1) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. Finally, the present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications.},
doi = {10.1002/aelm.201600490},
journal = {Advanced Electronic Materials},
number = 4,
volume = 3,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Voltage-dependent conductance of a single graphene nanoribbon
journal, October 2012

  • Koch, Matthias; Ample, Francisco; Joachim, Christian
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.169

Controlled synthesis of single-chirality carbon nanotubes
journal, August 2014

  • Sanchez-Valencia, Juan Ramon; Dienel, Thomas; Gröning, Oliver
  • Nature, Vol. 512, Issue 7512
  • DOI: 10.1038/nature13607

Optical properties of graphene nanoribbons: The role of many-body effects
journal, January 2008


Tunable Band Gaps and Excitons in Doped Semiconducting Carbon Nanotubes Made Possible by Acoustic Plasmons
journal, April 2010


Projector augmented-wave method
journal, December 1994


On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

van der Waals density functional made accurate
journal, March 2014


Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
journal, December 2006

  • Barone, Verónica; Hod, Oded; Scuseria, Gustavo E.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0617033

Ultra-narrow metallic armchair graphene nanoribbons
journal, December 2015

  • Kimouche, Amina; Ervasti, Mikko M.; Drost, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10177

Graphene transistors
journal, May 2010


Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors
journal, August 2016


Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
journal, November 2007


Exciton-dominated optical response of ultra-narrow graphene nanoribbons
journal, July 2014

  • Denk, Richard; Hohage, Michael; Zeppenfeld, Peter
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5253

Giant edge state splitting at atomically precise graphene zigzag edges
journal, May 2016

  • Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11507

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
journal, March 2008


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Many-Body Renormalization of Semiconductor Quantum Wire Excitons: Absorption, Gain, Binding, and Unbinding
journal, February 2000


Doping and phonon renormalization in carbon nanotubes
journal, October 2007

  • Tsang, J. C.; Freitag, M.; Perebeinos, V.
  • Nature Nanotechnology, Vol. 2, Issue 11
  • DOI: 10.1038/nnano.2007.321

Tunable electronic correlation effects in nanotube-light interactions
journal, November 2015


Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)
journal, May 2012


Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene
journal, April 2007


Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor
journal, April 2012


Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors
journal, May 2008


Energy Band-Gap Engineering of Graphene Nanoribbons
journal, May 2007


Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
journal, August 2014

  • Ugeda, Miguel M.; Bradley, Aaron J.; Shi, Su-Fei
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4061

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes
journal, September 2015


Energy Gaps in Graphene Nanoribbons
journal, November 2006


On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Quantum dot states and optical excitations of edge-modulated graphene nanoribbons
journal, July 2011


Top-Gated Graphene Nanoribbon Transistors with Ultrathin High- k Dielectrics
journal, May 2010

  • Liao, Lei; Bai, Jingwei; Cheng, Rui
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl100840z

Higher-accuracy van der Waals density functional
journal, August 2010


Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires
journal, January 2016

  • Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10235

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Electronic states of graphene nanoribbons and analytical solutions
journal, October 2010

  • Wakabayashi, Katsunori; Sasaki, Ken-ichi; Nakanishi, Takeshi
  • Science and Technology of Advanced Materials, Vol. 11, Issue 5
  • DOI: 10.1088/1468-6996/11/5/054504

Atomically controlled substitutional boron-doping of graphene nanoribbons
journal, August 2015

  • Kawai, Shigeki; Saito, Shohei; Osumi, Shinichiro
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9098

Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy
journal, January 2015


Peculiar width dependence of the electronic properties of carbon nanoribbons
journal, January 2006


Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
journal, December 1996


Graphene nano-ribbon electronics
journal, December 2007

  • Chen, Zhihong; Lin, Yu-Ming; Rooks, Michael J.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, Issue 2, p. 228-232
  • DOI: 10.1016/j.physe.2007.06.020

Breakdown of the adiabatic Born–Oppenheimer approximation in graphene
journal, February 2007

  • Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia
  • Nature Materials, Vol. 6, Issue 3
  • DOI: 10.1038/nmat1846

Gate-Variable Light Absorption and Emission in a Semiconducting Carbon Nanotube
journal, October 2009

  • Steiner, Mathias; Freitag, Marcus; Perebeinos, Vasili
  • Nano Letters, Vol. 9, Issue 10
  • DOI: 10.1021/nl9016804

Ab Initio G W Many-Body Effects in Graphene
journal, November 2008


Electronic Structure of Atomically Precise Graphene Nanoribbons
journal, July 2012

  • Ruffieux, Pascal; Cai, Jinming; Plumb, Nicholas C.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3021376

Environmental control of electron–phonon coupling in barium doped graphene
journal, September 2016


Kohn anomalies and nonadiabaticity in doped carbon nanotubes
journal, March 2007


Nano-architectures by covalent assembly of molecular building blocks
journal, October 2007

  • Grill, Leonhard; Dyer, Matthew; Lafferentz, Leif
  • Nature Nanotechnology, Vol. 2, Issue 11
  • DOI: 10.1038/nnano.2007.346

Observation of a universal donor-dependent vibrational mode in graphene
journal, February 2014

  • Fedorov, A. V.; Verbitskiy, N. I.; Haberer, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4257

Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons
journal, July 2015

  • Cloke, Ryan R.; Marangoni, Tomas; Nguyen, Giang D.
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b02523

Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study
journal, May 2014

  • Simonov, Konstantin A.; Vinogradov, Nikolay A.; Vinogradov, Alexander S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 23
  • DOI: 10.1021/jp502215m

Determination of SWCNT diameters from the Raman response of the radial breathing mode
journal, August 2001

  • Kuzmany, H.; Plank, W.; Hulman, M.
  • The European Physical Journal B, Vol. 22, Issue 3
  • DOI: 10.1007/s100510170108

WSXM : A software for scanning probe microscopy and a tool for nanotechnology
journal, January 2007

  • Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.
  • Review of Scientific Instruments, Vol. 78, Issue 1
  • DOI: 10.1063/1.2432410