DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reliable Potential Energy Surfaces for the Reactions of H2O with ThO2, PaO2+, UO22+, and UO2+

Abstract

The potential energy surfaces for the reactions of H2O with ThO2, PaO2+, UO22+, and UO2+ have been calculated at the coupled cluster CCSD(T) level extrapolated to the complete basis set limit with additional corrections including scalar relativistic and spin-orbit. The reactions proceed by the formation of an initial Lewis acid-base adduct (H2O)AnO20/+/2+ followed by a proton transfer to generate the dihydroxide AnO(OH)20/+/2+. The results are in excellent agreement with mass spectrometry experiments and prior calculations of hydrolysis reactions of the group 4 transition metal dioxides MO2. The differences in the energies of the stationary points on the potential energy surface are explained in terms of the charges on the system and the populations on the metal center. The use of an improved starting point for the coupled cluster CCSD(T) calculations based on density functional theory with the PW91 exchange-correlation functional or Brueckner orbitals is described. The importance of including second-order spin-orbit corrections for closed-shell molecules is also described. These improvements in the calculations are then correlated with the 5f populations on the actinide.

Authors:
 [1];  [2];  [3];  [1]
  1. Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Chemistry
  2. Washington State Univ., Pullman, WA (United States). Dept. of Chemistry
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1461097
Grant/Contract Number:  
AC02-05CH11231; FG02-12ER16329
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 119; Journal Issue: 46; Related Information: © 2015 American Chemical Society.; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; actinyl reactions; coupled cluster CCSD(T); relativistic quantum chemistry; hydrolysis

Citation Formats

Vasiliu, Monica, Peterson, Kirk A., Gibson, John K., and Dixon, David A. Reliable Potential Energy Surfaces for the Reactions of H2O with ThO2, PaO2+, UO22+, and UO2+. United States: N. p., 2015. Web. doi:10.1021/acs.jpca.5b08618.
Vasiliu, Monica, Peterson, Kirk A., Gibson, John K., & Dixon, David A. Reliable Potential Energy Surfaces for the Reactions of H2O with ThO2, PaO2+, UO22+, and UO2+. United States. https://doi.org/10.1021/acs.jpca.5b08618
Vasiliu, Monica, Peterson, Kirk A., Gibson, John K., and Dixon, David A. Wed . "Reliable Potential Energy Surfaces for the Reactions of H2O with ThO2, PaO2+, UO22+, and UO2+". United States. https://doi.org/10.1021/acs.jpca.5b08618. https://www.osti.gov/servlets/purl/1461097.
@article{osti_1461097,
title = {Reliable Potential Energy Surfaces for the Reactions of H2O with ThO2, PaO2+, UO22+, and UO2+},
author = {Vasiliu, Monica and Peterson, Kirk A. and Gibson, John K. and Dixon, David A.},
abstractNote = {The potential energy surfaces for the reactions of H2O with ThO2, PaO2+, UO22+, and UO2+ have been calculated at the coupled cluster CCSD(T) level extrapolated to the complete basis set limit with additional corrections including scalar relativistic and spin-orbit. The reactions proceed by the formation of an initial Lewis acid-base adduct (H2O)AnO20/+/2+ followed by a proton transfer to generate the dihydroxide AnO(OH)20/+/2+. The results are in excellent agreement with mass spectrometry experiments and prior calculations of hydrolysis reactions of the group 4 transition metal dioxides MO2. The differences in the energies of the stationary points on the potential energy surface are explained in terms of the charges on the system and the populations on the metal center. The use of an improved starting point for the coupled cluster CCSD(T) calculations based on density functional theory with the PW91 exchange-correlation functional or Brueckner orbitals is described. The importance of including second-order spin-orbit corrections for closed-shell molecules is also described. These improvements in the calculations are then correlated with the 5f populations on the actinide.},
doi = {10.1021/acs.jpca.5b08618},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 46,
volume = 119,
place = {United States},
year = {Wed Oct 28 00:00:00 EDT 2015},
month = {Wed Oct 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Formula of Uranyl Ion
journal, July 1949

  • Crandall, Howard W.
  • The Journal of Chemical Physics, Vol. 17, Issue 7
  • DOI: 10.1063/1.1747345

The uranium(V)-catalysed exchange reaction between uranyl ion and water in perchloric acid solution
journal, February 1961


Chemical Speciation of the Uranyl Ion under Highly Alkaline Conditions. Synthesis, Structures, and Oxo Ligand Exchange Dynamics
journal, April 1999

  • Clark, David L.; Conradson, Steven D.; Donohoe, Robert J.
  • Inorganic Chemistry, Vol. 38, Issue 7
  • DOI: 10.1021/ic981137h

Oxo ligand functionalization in the uranyl ion (UO22+)
journal, February 2010


An Investigation of the Accuracy of Different DFT Functionals on the Water Exchange Reaction in Hydrated Uranyl(VI) in the Ground State and the First Excited State
journal, February 2008

  • Wåhlin, Pernilla; Danilo, Cécile; Vallet, Valérie
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 4
  • DOI: 10.1021/ct700062x

Ab Initio Study of the Mechanism for Photoinduced Yl-Oxygen Exchange in Uranyl(VI) in Acidic Aqueous Solution
journal, September 2008

  • Réal, Florent; Vallet, Valérie; Wahlgren, Ulf
  • Journal of the American Chemical Society, Vol. 130, Issue 35
  • DOI: 10.1021/ja8026407

Theoretical Study of the Oxygen Exchange in Uranyl Hydroxide. An Old Riddle Solved?
journal, October 2008

  • Shamov, Grigory A.; Schreckenbach, Georg
  • Journal of the American Chemical Society, Vol. 130, Issue 41
  • DOI: 10.1021/ja804742f

Theoretical Actinide Molecular Science
journal, January 2010

  • Schreckenbach, Georg; Shamov, Grigory A.
  • Accounts of Chemical Research, Vol. 43, Issue 1
  • DOI: 10.1021/ar800271r

Oxygen Exchange in Uranyl Hydroxide via Two “Nonclassical” Ions
journal, April 2010

  • Bühl, Michael; Schreckenbach, Georg
  • Inorganic Chemistry, Vol. 49, Issue 8
  • DOI: 10.1021/ic902508z

Insights into Uranyl Chemistry from Molecular Dynamics Simulations
journal, September 2011


OXYGEN EXCHANGE REACTIONS OF PLUTONIUM IONS IN SOLUTION 1
journal, February 1963

  • Rabideau, S. W.; Masters, B. J.
  • The Journal of Physical Chemistry, Vol. 67, Issue 2
  • DOI: 10.1021/j100796a025

THE OXYGEN EXCHANGE REACTIONS OF NpO 2 +2 AND NpO 2 + WITH WATER 1
journal, December 1963

  • Rabideau, Sherman W.
  • The Journal of Physical Chemistry, Vol. 67, Issue 12
  • DOI: 10.1021/j100806a036

On the Origins of Faster Oxo Exchange for Uranyl(V) versus Plutonyl(V)
journal, September 2012

  • Rios, Daniel; del Carmen Michelini, Maria; Lucena, Ana F.
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305800q

Elucidating Protactinium Hydrolysis: The Relative Stabilities of PaO 2 (H 2 O) + and PaO(OH) 2 +
journal, July 2015


Computational Study of H 2 and O 2 Production from Water Splitting by Small (MO 2 ) n Clusters (M = Ti, Zr, Hf)
journal, April 2013

  • Fang, Zongtang; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 16
  • DOI: 10.1021/jp401443x

Computational Study of the Hydrolysis Reactions of Small MO 2 (M = Zr and Hf) Nanoclusters with Water
journal, April 2012

  • Fang, Zongtang; Outlaw, Matthew D.; Smith, Kyle K.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 15
  • DOI: 10.1021/jp210867w

Computational Study of the Hydrolysis Reactions of the Ground and First Excited Triplet States of Small TiO 2 Nanoclusters
journal, April 2011

  • Wang, Tsang-Hsiu; Fang, Zongtang; Gist, Natalie W.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 19
  • DOI: 10.1021/jp111026x

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

A fifth-order perturbation comparison of electron correlation theories
journal, May 1989


Coupled-cluster theory in quantum chemistry
journal, February 2007


Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Accurate Relativistic Small-Core Pseudopotentials for Actinides. Energy Adjustment for Uranium and First Applications to Uranium Hydride
journal, November 2009

  • Dolg, Michael; Cao, Xiaoyan
  • The Journal of Physical Chemistry A, Vol. 113, Issue 45
  • DOI: 10.1021/jp9044594

Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium
journal, March 2014

  • Weigand, Anna; Cao, Xiaoyan; Hangele, Tim
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500215z

Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
journal, December 2002

  • Peterson, Kirk A.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.1520138

Note on an Approximation Treatment for Many-Electron Systems
journal, October 1934


Theoretical models incorporating electron correlation
journal, January 1976

  • Pople, John A.; Binkley, J. Stephen; Seeger, Rolf
  • International Journal of Quantum Chemistry, Vol. 10, Issue S10
  • DOI: 10.1002/qua.560100802

Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories
journal, September 1994


An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen
journal, June 1988

  • Rittby, Magnus; Bartlett, Rodney J.
  • The Journal of Physical Chemistry, Vol. 92, Issue 11
  • DOI: 10.1021/j100322a004

Coupled cluster theory for high spin, open shell reference wave functions
journal, October 1993

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.465990

Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H 2 →H 2 +H reaction
journal, May 1994

  • Peterson, Kirk A.; Woon, David E.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466884

Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


The generalized Douglas–Kroll transformation
journal, November 2002

  • Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
  • The Journal of Chemical Physics, Vol. 117, Issue 20
  • DOI: 10.1063/1.1515314

Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets
journal, January 2001

  • de Jong, W. A.; Harrison, R. J.; Dixon, D. A.
  • The Journal of Chemical Physics, Vol. 114, Issue 1
  • DOI: 10.1063/1.1329891

An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation
journal, February 2007

  • Iliaš, Miroslav; Saue, Trond
  • The Journal of Chemical Physics, Vol. 126, Issue 6
  • DOI: 10.1063/1.2436882

Relativistic Hamiltonians for Chemistry: A Primer
journal, November 2011


Formulation and implementation of a relativistic unrestricted coupled‐cluster method including noniterative connected triples
journal, November 1996

  • Visscher, Lucas; Lee, Timothy J.; Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 105, Issue 19
  • DOI: 10.1063/1.472655

Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
journal, December 2001

  • Visscher, Lucas; Eliav, Ephraim; Kaldor, Uzi
  • The Journal of Chemical Physics, Vol. 115, Issue 21
  • DOI: 10.1063/1.1415746

Molpro: a general-purpose quantum chemistry program package: Molpro
journal, July 2011

  • Werner, Hans-Joachim; Knowles, Peter J.; Knizia, Gerald
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.82

Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Generalized gradient approximation for the exchange-correlation hole of a many-electron system
journal, December 1996


Nuclear Saturation and Two-Body Forces. II. Tensor Forces
journal, October 1954


An electron pair operator approach to coupled cluster wave functions. Application to He 2 , Be 2 , and Mg 2 and comparison with CEPA methods
journal, April 1981

  • Chiles, Richard A.; Dykstra, Clifford E.
  • The Journal of Chemical Physics, Vol. 74, Issue 8
  • DOI: 10.1063/1.441643

An examination of the Brueckner condition for the selection of molecular orbitals in correlated wavefunctions
journal, February 1977


Size-consistent Brueckner theory limited to double substitutions
journal, December 1989


Actinide Dioxides in Water: Interactions at the Interface
journal, November 2011

  • Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 24
  • DOI: 10.1021/jz201458x

Gas Phase Properties of MX 2 and MX 4 (X = F, Cl) for M = Group 4, Group 14, Cerium, and Thorium
journal, May 2015

  • Thanthiriwatte, K. Sahan; Vasiliu, Monica; Battey, Samuel R.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 22
  • DOI: 10.1021/acs.jpca.5b02544

Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium
journal, November 2009

  • Marçalo, Joaquim; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 45
  • DOI: 10.1021/jp904862a

Accurate Thermochemistry for Transition Metal Oxide Clusters
journal, July 2009

  • Li, Shenggang; Hennigan, Jamie M.; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 27
  • DOI: 10.1021/jp810182a

Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
journal, September 1988

  • Reed, Alan E.; Curtiss, Larry A.; Weinhold, Frank
  • Chemical Reviews, Vol. 88, Issue 6
  • DOI: 10.1021/cr00088a005

NBO 6.0 : Natural bond orbital analysis program
journal, March 2013

  • Glendening, Eric D.; Landis, Clark R.; Weinhold, Frank
  • Journal of Computational Chemistry, Vol. 34, Issue 16
  • DOI: 10.1002/jcc.23266

Oxo-Exchange of Gas-Phase Uranyl, Neptunyl, and Plutonyl with Water and Methanol
journal, December 2013

  • Lucena, Ana F.; Odoh, Samuel O.; Zhao, Jing
  • Inorganic Chemistry, Vol. 53, Issue 4
  • DOI: 10.1021/ic402824k

Works referencing / citing this record:

Infrared Spectra of the HAnX and H 2 AnX 2 Molecules (An=Th and U, X=Cl and Br) in Argon Matrices Supported by Electronic Structure Calculations
journal, January 2019

  • Li, Lin; Stüker, Tony; Andrews, Lester
  • Chemistry - A European Journal, Vol. 25, Issue 7
  • DOI: 10.1002/chem.201805372

Bond energy of ThN + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N 2 and NO
journal, July 2019

  • Cox, Richard M.; Kafle, Arjun; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 151, Issue 3
  • DOI: 10.1063/1.5111534

Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium
journal, November 2017

  • Dau, Phuong D.; Vasiliu, Monica; Peterson, Kirk A.
  • Chemistry - A European Journal, Vol. 23, Issue 68
  • DOI: 10.1002/chem.201704193

Gas Phase Hydrolysis and Oxo‐Exchange of Actinide Dioxide Cations: Elucidating Intrinsic Chemistry from Protactinium to Einsteinium
journal, January 2019

  • Vasiliu, Monica; Gibson, John K.; Peterson, Kirk A.
  • Chemistry – A European Journal, Vol. 25, Issue 17
  • DOI: 10.1002/chem.201803932

Covalency hinders AnO 2 (H 2 O) + → AnO(OH) 2 + isomerisation (An = Pa–Pu)
journal, January 2016


Mononuclear thorium halide clusters ThX 4 (X = F, Cl): gas-phase hydrolysis reactions
journal, January 2018

  • Wang, Bin; Xia, Chan-Juan; Fang, Hong-Lin
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 32
  • DOI: 10.1039/c8cp03071e

Protactinium and the intersection of actinide and transition metal chemistry
journal, February 2018


Correlation consistent basis sets for lanthanides: The atoms La–Lu
journal, August 2016

  • Lu, Qing; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 145, Issue 5
  • DOI: 10.1063/1.4959280

Formation and hydrolysis of gas-phase [UO 2 (R)] + : R═CH 3 , CH 2 CH 3 , CH═CH 2 , and C 6 H 5
journal, September 2019

  • Tatosian, Irena; Bubas, Amanda; Iacovino, Anna
  • Journal of Mass Spectrometry, Vol. 54, Issue 9
  • DOI: 10.1002/jms.4430

Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr
journal, August 2017

  • Feng, Rulin; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 147, Issue 8
  • DOI: 10.1063/1.4994725

Bond energies of ThO + and ThC + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O 2 and CO
journal, May 2016

  • Cox, Richard M.; Citir, Murat; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 144, Issue 18
  • DOI: 10.1063/1.4948812

Protactinium And The Intersection Of Actinide And Transition Metal Chemistry
text, January 2018


Protactinium and the intersection of actinide and transition metal chemistry
journal, February 2018