DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films

Abstract

The nature of the metal-insulator transition in thin films and superlattices of LaNiO3 only a few unit cells in thickness remains elusive despite tremendous effort. Quantum confinement and epitaxial strain have been evoked as the mechanisms, although other factors such as growth-induced disorder, cation non-stoichiometry, oxygen vacancies, and substrate-film interface quality may also affect the observable properties of ultrathin films. Here we report results obtained for near-ideal LaNiO3 films with different thicknesses and terminations grown by atomic layer-by-layer laser molecular beam epitaxy on LaAlO3 substrates. We find that the room-temperature metallic behavior persists until the film thickness is reduced to an unprecedentedly small 1.5 unit cells (NiO2 termination). Electronic structure measurements using X-ray absorption spectroscopy and first-principles calculation suggest that oxygen vacancies existing in the films also contribute to the metal-insulator transition.

Authors:
 [1];  [1];  [2];  [1];  [3];  [4]; ORCiD logo [5];  [6];  [7];  [8];  [9];  [9];  [10];  [11];  [2];  [2]
  1. Temple Univ., Philadelphia, PA (United States). Dept. of Physics
  2. Temple Univ., Philadelphia, PA (United States). Dept. of Physics and Temple Materials Inst.
  3. Univ. of Illinois at Chicago, Chicago, IL (United States). Dept. of Physics; Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  4. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  5. Univ. of Salerno, CNR-SPIN, Fisciano (Italy); Inst. for Materials Workshop (CNR-IOM), Trieste (Italy)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Center for Electron Microscopy and Molecular Foundry
  7. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  8. Univ. of South Florida, Tampa, FL (United States). Dept. of Physics
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  10. Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Inst. for Materials Workshop (CNR-IOM), Trieste (Italy)
  11. Columbia Univ., New York, NY (United States). Dept. of Physics; The Flatiron Inst., New York, NY (United States). Center for Computational Quantum Physics
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source; Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO)
OSTI Identifier:
1460349
Alternate Identifier(s):
OSTI ID: 1462254; OSTI ID: 1463856
Report Number(s):
BNL-207932-2018-JAAM
Journal ID: ISSN 2041-1723; ark:/13030/qt4h42t3tn
Grant/Contract Number:  
AC02-05CH11231; DMR-1245000; W911NF-15-1-0181; AC02-98CH10886; SC0012704; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Related Information: © 2018 The Author(s).; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Golalikhani, M., Lei, Q., Chandrasena, R. U., Kasaei, L., Park, H., Bai, J., Orgiani, P., Ciston, J., Sterbinsky, G. E., Arena, D. A., Shafer, P., Arenholz, E., Davidson, B. A., Millis, A. J., Gray, A. X., and Xi, X. X. Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04546-5.
Golalikhani, M., Lei, Q., Chandrasena, R. U., Kasaei, L., Park, H., Bai, J., Orgiani, P., Ciston, J., Sterbinsky, G. E., Arena, D. A., Shafer, P., Arenholz, E., Davidson, B. A., Millis, A. J., Gray, A. X., & Xi, X. X. Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films. United States. https://doi.org/10.1038/s41467-018-04546-5
Golalikhani, M., Lei, Q., Chandrasena, R. U., Kasaei, L., Park, H., Bai, J., Orgiani, P., Ciston, J., Sterbinsky, G. E., Arena, D. A., Shafer, P., Arenholz, E., Davidson, B. A., Millis, A. J., Gray, A. X., and Xi, X. X. Thu . "Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films". United States. https://doi.org/10.1038/s41467-018-04546-5. https://www.osti.gov/servlets/purl/1460349.
@article{osti_1460349,
title = {Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films},
author = {Golalikhani, M. and Lei, Q. and Chandrasena, R. U. and Kasaei, L. and Park, H. and Bai, J. and Orgiani, P. and Ciston, J. and Sterbinsky, G. E. and Arena, D. A. and Shafer, P. and Arenholz, E. and Davidson, B. A. and Millis, A. J. and Gray, A. X. and Xi, X. X.},
abstractNote = {The nature of the metal-insulator transition in thin films and superlattices of LaNiO3 only a few unit cells in thickness remains elusive despite tremendous effort. Quantum confinement and epitaxial strain have been evoked as the mechanisms, although other factors such as growth-induced disorder, cation non-stoichiometry, oxygen vacancies, and substrate-film interface quality may also affect the observable properties of ultrathin films. Here we report results obtained for near-ideal LaNiO3 films with different thicknesses and terminations grown by atomic layer-by-layer laser molecular beam epitaxy on LaAlO3 substrates. We find that the room-temperature metallic behavior persists until the film thickness is reduced to an unprecedentedly small 1.5 unit cells (NiO2 termination). Electronic structure measurements using X-ray absorption spectroscopy and first-principles calculation suggest that oxygen vacancies existing in the films also contribute to the metal-insulator transition.},
doi = {10.1038/s41467-018-04546-5},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Thu Jun 07 00:00:00 EDT 2018},
month = {Thu Jun 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal-insulator transition in oxygen-deficient LaNiO 3 x perovskites
journal, December 1996


Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices
journal, May 2011


Low-dimensional Mott material: Transport in ultrathin epitaxial LaNiO3 films
journal, February 2010

  • Son, Junwoo; Moetakef, Pouya; LeBeau, James M.
  • Applied Physics Letters, Vol. 96, Issue 6
  • DOI: 10.1063/1.3309713

Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3
journal, August 2004

  • Muller, David A.; Nakagawa, Naoyuki; Ohtomo, Akira
  • Nature, Vol. 430, Issue 7000
  • DOI: 10.1038/nature02756

First-principles study of oxygen-deficient LaNiO 3 structures
journal, October 2015


Strain and composition dependence of orbital polarization in nickel oxide superlattices
journal, September 2013


Microstructural Characterization of the LaNiO3-y System
journal, June 1994

  • Sayagués, M. J.; Vallet-Regı́, M.; Caneiro, A.
  • Journal of Solid State Chemistry, Vol. 110, Issue 2
  • DOI: 10.1006/jssc.1994.1172

Orbital Engineering in Symmetry-Breaking Polar Heterostructures
journal, January 2015


Orbital Order and Possible Superconductivity in LaNiO 3 / LaMO 3 Superlattices
journal, January 2008


Strain-Engineered Oxygen Vacancies in CaMnO 3 Thin Films
journal, January 2017


Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation
journal, March 2013


Oxygen Vacancy Induced Room-Temperature Metal–Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics
journal, April 2016

  • Wang, Le; Dash, Sibashisa; Chang, Lei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 15
  • DOI: 10.1021/acsami.6b00650

Modifying the Electronic Orbitals of Nickelate Heterostructures via Structural Distortions
journal, May 2013


Tuning the Structure of Nickelates to Achieve Two-Dimensional Electron Conduction
journal, February 2014

  • Kumah, Divine P.; Disa, Ankit S.; Ngai, Joseph H.
  • Advanced Materials, Vol. 26, Issue 12
  • DOI: 10.1002/adma.201304256

IMD—Software for modeling the optical properties of multilayer films
journal, January 1998


Effect of Surface Termination on the Electronic Properties of LaNiO 3 Films
journal, November 2014


Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models
journal, October 2006


Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap
journal, April 1992


It takes two to waver
journal, June 2014


Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO 3 superlattices: A DFT+DMFT study
journal, June 2016


Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
journal, February 2017


Orbital reflectometry of oxide heterostructures
journal, February 2011

  • Benckiser, Eva; Haverkort, Maurits W.; Brück, Sebastian
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2958

Atomic-scale control of competing electronic phases in ultrathin LaNiO3
journal, April 2014

  • King, P. D. C.; Wei, H. I.; Nie, Y. F.
  • Nature Nanotechnology, Vol. 9, Issue 6
  • DOI: 10.1038/nnano.2014.59

A-site layer terminated perovskite substrate: NdGaO3
journal, April 1999

  • Ohnishi, Tsuyoshi; Takahashi, Kazuhiro; Nakamura, Masashi
  • Applied Physics Letters, Vol. 74, Issue 17
  • DOI: 10.1063/1.123888

Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3
journal, November 2009

  • Scherwitzl, R.; Zubko, P.; Lichtensteiger, C.
  • Applied Physics Letters, Vol. 95, Issue 22
  • DOI: 10.1063/1.3269591

Theory of the Magnetic and Metal-Insulator Transitions in R NiO 3 Bulk and Layered Structures
journal, March 2013


Strain-Engineered Oxygen Vacancies in CaMnO₃ Thin Films
text, January 2017

  • Spaldin, Nicola A.; Kobayashi, Keisuke; De Groot, Frank M. F.
  • American Chemical Society
  • DOI: 10.7892/boris.94695

Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices
text, January 2011


Works referencing / citing this record:

Interface-engineered hole doping in Sr 2 IrO 4 /LaNiO 3 heterostructure
journal, October 2019


Depolarizing-Field Effects in Epitaxial Capacitor Heterostructures
text, January 2019