skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

Abstract

Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [4]
  1. Institute for Solar Fuels, Berlin (Germany). Helmholtz-Zentrum Berlin für Materialien und Energie GmbH; Technische Universität Ilmenau (Germany). Department of Physcis; Humboldt-Universität zu Berlin (Germany). Department of Physics
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  3. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)
  4. Technische Universität Ilmenau (Germany). Department of Physcis
Publication Date:
Research Org.:
California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1457517
Grant/Contract Number:  
SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 30 DIRECT ENERGY CONVERSION

Citation Formats

May, Matthias M., Lewerenz, Hans-Joachim, Lackner, David, Dimroth, Frank, and Hannappel, Thomas. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. United States: N. p., 2015. Web. doi:10.1038/ncomms9286.
May, Matthias M., Lewerenz, Hans-Joachim, Lackner, David, Dimroth, Frank, & Hannappel, Thomas. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. United States. doi:10.1038/ncomms9286.
May, Matthias M., Lewerenz, Hans-Joachim, Lackner, David, Dimroth, Frank, and Hannappel, Thomas. Tue . "Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure". United States. doi:10.1038/ncomms9286. https://www.osti.gov/servlets/purl/1457517.
@article{osti_1457517,
title = {Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure},
author = {May, Matthias M. and Lewerenz, Hans-Joachim and Lackner, David and Dimroth, Frank and Hannappel, Thomas},
abstractNote = {Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.},
doi = {10.1038/ncomms9286},
journal = {Nature Communications},
number = 1,
volume = 6,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors
journal, January 1979


Silicon based tandem cells: novel photocathodes for hydrogen production
journal, January 2014

  • Calvet, W.; Murugasen, E.; Klett, J.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 24
  • DOI: 10.1039/c3cp55198a

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Coulometric Analysis with Gas Volume Measurement.
journal, November 1964


Basic Concepts and Interfacial Aspects of High-Efficiency III-V Multijunction Solar Cells
journal, December 2007

  • Sağol, B. Erol; Seidel, Ulf; Szabó, Nadine
  • CHIMIA International Journal for Chemistry, Vol. 61, Issue 12
  • DOI: 10.2533/chimia.2007.775

Net primary energy balance of a solar-driven photoelectrochemical water-splitting device
journal, January 2013

  • Zhai, Pei; Haussener, Sophia; Ager, Joel
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40880a

Electrochemical Stability of p-GaInP[sub 2] in Aqueous Electrolytes Toward Photoelectrochemical Water Splitting
journal, January 1998

  • Khaselev, Oscar
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838808

Current-voltage characteristics of coupled photodiode-electrocatalyst devices
journal, September 2013

  • Shaner, Matthew R.; Fountaine, Katherine T.; Lewerenz, Hans-Joachim
  • Applied Physics Letters, Vol. 103, Issue 14
  • DOI: 10.1063/1.4822179

Heterogeneous electrochemical systems for solar energy conversion
journal, January 1980


In-situ monitoring and analysis of GaSb(100) substrate deoxidation
journal, April 2005


Surface recombination at semiconductor electrodes
journal, May 1984

  • Li, J.; Peat, R.; Peter, L. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 165, Issue 1-2
  • DOI: 10.1016/S0022-0728(84)80085-6

Core-Shell Assembled Nanoparticles as Catalysts
journal, September 2001


Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
journal, September 2014


Guide to references on III–V semiconductor chemical etching
journal, January 2001


Interface condition of n-Si(111) during photocurrent oscillations in NH4F solutions
journal, February 1995


Photoelectrochemical Conditioning of MOVPE p-InP Films for Light-Induced Hydrogen Evolution: Chemical, Electronic and Optical Properties
journal, January 2013

  • Muñoz, A. G.; Heine, C.; Lublow, M.
  • ECS Journal of Solid State Science and Technology, Vol. 2, Issue 4
  • DOI: 10.1149/2.016304jss

Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO 4
journal, November 2011

  • Zhong, Diane K.; Choi, Sujung; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207348x

Optical in Situ Study of InP(100) Surface Chemistry: Dissociative Adsorption of Water and Oxygen
journal, August 2014

  • May, Matthias M.; Lewerenz, Hans-Joachim; Hannappel, Thomas
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp502955m

Structure-sensitive oxidation of the indium phosphide (001) surface
journal, June 2002

  • Chen, G.; Visbeck, S. B.; Law, D. C.
  • Journal of Applied Physics, Vol. 91, Issue 11
  • DOI: 10.1063/1.1471577

Surface Chemistry of GaP(001) and InP(001) in Contact with Water
journal, December 2013

  • Wood, Brandon C.; Schwegler, Eric; Choi, Woon Ih
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4098843

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs
journal, January 2014

  • Seger, Brian; Castelli, Ivano E.; Vesborg, Peter C. K.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01335B

Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: GaP(100) Photoelectrodes and Surface Modification
journal, August 2012

  • Kaiser, Bernhard; Fertig, Dominic; Ziegler, Jürgen
  • ChemPhysChem, Vol. 13, Issue 12
  • DOI: 10.1002/cphc.201200432

Band parameters for III–V compound semiconductors and their alloys
journal, June 2001

  • Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R.
  • Journal of Applied Physics, Vol. 89, Issue 11, p. 5815-5875
  • DOI: 10.1063/1.1368156

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Metamorphic GayIn1?yP/Ga1?xInxAs tandem solar cells for space and for terrestrial concentrator applications at C > 1000 suns
journal, January 2001

  • Dimroth, F.; Beckert, R.; Meusel, M.
  • Progress in Photovoltaics: Research and Applications, Vol. 9, Issue 3
  • DOI: 10.1002/pip.362

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Anthropogenic Chemical Carbon Cycle for a Sustainable Future
journal, August 2011

  • Olah, George A.; Prakash, G. K. Surya; Goeppert, Alain
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja202642y

Underpotential deposition of metals and work function differences
journal, July 1974

  • Kolb, D. M.; Przasnyski, M.; Gerischer, H.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 54, Issue 1
  • DOI: 10.1016/S0022-0728(74)80377-3

The interface of GaP(100) and H 2 O studied by photoemission and reflection anisotropy spectroscopy
journal, October 2013


A model for electrochemical oscillations at the Si∣electrolyte contact
journal, May 2000