skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide

Abstract

Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here in this paper, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron and infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3 bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishesmore » a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [1];  [1];  [1];  [5];  [3];  [4]; ORCiD logo [4]; ORCiD logo [6];  [7];  [8]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  2. Univ. of Maryland, College Park, MD (United States). Materials Science and Engineering Dept.
  3. Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry
  4. Naval Research Lab. (NRL), Washington, DC (United States). Chemistry Division
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Vrije Univ. Brussel, Brussels (Netherlands). Dept. of Materials and Chemistry, SURF Research Group
  6. Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry
  7. Univ. of Maryland, College Park, MD (United States). Materials Science and Engineering Dept.
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOD
OSTI Identifier:
1456977
Grant/Contract Number:  
AC02-05CH11231; DMR-130077; HDTRA11510005
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 17; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Trotochaud, Lena, Tsyshevsky, Roman, Holdren, Scott, Fears, Kenan, Head, Ashley R., Yu, Yi, Karslioglu, Osman, Pletincx, Sven, Eichhorn, Bryan, Owrutsky, Jeffrey, Long, Jeffrey, Zachariah, Michael, Kuklja, Maija M., and Bluhm, Hendrik. Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide. United States: N. p., 2017. Web. https://doi.org/10.1021/acs.chemmater.7b02489.
Trotochaud, Lena, Tsyshevsky, Roman, Holdren, Scott, Fears, Kenan, Head, Ashley R., Yu, Yi, Karslioglu, Osman, Pletincx, Sven, Eichhorn, Bryan, Owrutsky, Jeffrey, Long, Jeffrey, Zachariah, Michael, Kuklja, Maija M., & Bluhm, Hendrik. Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide. United States. https://doi.org/10.1021/acs.chemmater.7b02489
Trotochaud, Lena, Tsyshevsky, Roman, Holdren, Scott, Fears, Kenan, Head, Ashley R., Yu, Yi, Karslioglu, Osman, Pletincx, Sven, Eichhorn, Bryan, Owrutsky, Jeffrey, Long, Jeffrey, Zachariah, Michael, Kuklja, Maija M., and Bluhm, Hendrik. Fri . "Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide". United States. https://doi.org/10.1021/acs.chemmater.7b02489. https://www.osti.gov/servlets/purl/1456977.
@article{osti_1456977,
title = {Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide},
author = {Trotochaud, Lena and Tsyshevsky, Roman and Holdren, Scott and Fears, Kenan and Head, Ashley R. and Yu, Yi and Karslioglu, Osman and Pletincx, Sven and Eichhorn, Bryan and Owrutsky, Jeffrey and Long, Jeffrey and Zachariah, Michael and Kuklja, Maija M. and Bluhm, Hendrik},
abstractNote = {Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here in this paper, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron and infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3 bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishes a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.},
doi = {10.1021/acs.chemmater.7b02489},
journal = {Chemistry of Materials},
number = 17,
volume = 29,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Update 1 of: Destruction and Detection of Chemical Warfare Agents
journal, December 2015


Interaction of an organophosphate with a peripheral site on acetylcholinesterase
journal, January 1990

  • Friboulet, Alain; Rieger, Francois; Goudou, Daniele
  • Biochemistry, Vol. 29, Issue 4
  • DOI: 10.1021/bi00456a010

Molecular mechanic study of nerve agentO-ethylS-[2-(diisopropylamino)ethyl]methylphosphonothioate (VX) bound to the active site ofTorpedo californica acetylcholinesterase
journal, August 1997


In vivo cholinesterase inhibitory specificity of organophosphorus nerve agents
journal, December 2005

  • Shih, Tsung-Ming; Kan, Robert K.; McDonough, John H.
  • Chemico-Biological Interactions, Vol. 157-158
  • DOI: 10.1016/j.cbi.2005.10.042

Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats
journal, June 2016

  • Bromberg, Lev; Su, Xiao; Martis, Vladimir
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 27
  • DOI: 10.1021/acsami.6b05241

Decontamination of Chemical Warfare Agents on sensitive equipment materials using Zr 4+ and Ge 4+ co-doped TiO 2 and hydrofluoroether suspension
journal, October 2016


Metal–Organic Frameworks for Air Purification of Toxic Chemicals
journal, April 2014

  • DeCoste, Jared B.; Peterson, Gregory W.
  • Chemical Reviews, Vol. 114, Issue 11
  • DOI: 10.1021/cr4006473

Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP( g ), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study
journal, May 2017

  • Wang, G.; Sharp, C.; Plonka, A. M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b00070

Decomposition of Dimethyl Methylphosphonate on Pt, Au, and Au−Pt Clusters Supported on TiO 2 (110)
journal, November 2008

  • Ratliff, Jay S.; Tenney, Samuel A.; Hu, Xiaofeng
  • Langmuir, Vol. 25, Issue 1
  • DOI: 10.1021/la802361q

Dimethyl Methylphosphonate Decomposition on Titania-Supported Ni Clusters and Films:  A Comparison of Chemical Activity on Different Ni Surfaces
journal, August 2004

  • Zhou, J.; Ma, S.; Kang, Y. C.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 31
  • DOI: 10.1021/jp040185m

Surface chemistry of dimethyl methylphosphonate on rhodium(100)
journal, June 1985

  • Hegde, R. I.; Greenlief, C. M.; White, J. M.
  • The Journal of Physical Chemistry, Vol. 89, Issue 13
  • DOI: 10.1021/j100259a035

Adsorption and Decomposition of Dimethyl Methylphosphonate on Y 2 O 3 Nanoparticles
journal, January 2007

  • Gordon, Wesley O.; Tissue, Brian M.; Morris, John R.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 8
  • DOI: 10.1021/jp0650376

Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films
journal, March 2010


Dimethyl Methylphosphonate Decomposition on Cu Surfaces:  Supported Cu Nanoclusters and Films on TiO 2 (110)
journal, October 2004


Adsorption of Dimethyl Methylphosphonate on MoO 3 : The Role of Oxygen Vacancies
journal, December 2016

  • Head, Ashley R.; Tsyshevsky, Roman; Trotochaud, Lena
  • The Journal of Physical Chemistry C, Vol. 120, Issue 51
  • DOI: 10.1021/acs.jpcc.6b07340

Surface chemistry of organophosphorus compounds
journal, November 1988

  • Ekerdt, J. G.; Klabunde, K. J.; Shapley, J. R.
  • The Journal of Physical Chemistry, Vol. 92, Issue 22
  • DOI: 10.1021/j100333a005

Catalytic Oxidative Decomposition of Dimethyl Methylphosphonate over Cu-Substituted Hydroxyapatite
journal, January 1994

  • Lee, K. Y.; Houalla, M.; Hercules, D. M.
  • Journal of Catalysis, Vol. 145, Issue 1
  • DOI: 10.1006/jcat.1994.1026

Photoelectron spectroscopy under ambient pressure and temperature conditions
journal, March 2009

  • Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, Issue 1-2
  • DOI: 10.1016/j.nima.2008.12.155

Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the Advanced Light Source
journal, February 2006

  • Bluhm, H.; Andersson, K.; Araki, T.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 150, Issue 2-3
  • DOI: 10.1016/j.elspec.2005.07.005

A differentially pumped electrostatic lens system for photoemission studies in the millibar range
journal, November 2002

  • Ogletree, D. Frank; Bluhm, Hendrik; Lebedev, Gennadi
  • Review of Scientific Instruments, Vol. 73, Issue 11
  • DOI: 10.1063/1.1512336

Vapor Pressure of Organophosphorus Nerve Agent Simulant Compounds
journal, April 2009

  • Butrow, Ann B.; Buchanan, James H.; Tevault, David E.
  • Journal of Chemical & Engineering Data, Vol. 54, Issue 6
  • DOI: 10.1021/je8010024

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

The p-type conduction mechanism in Cu2O: a first principles study
journal, January 2006

  • Nolan, Michael; Elliott, Simon D.
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 45
  • DOI: 10.1039/b611969g

Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption
journal, January 2014

  • Maimaiti, Yasheng; Nolan, Michael; Elliott, Simon D.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 7
  • DOI: 10.1039/c3cp53991a

Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires
journal, July 2010

  • Hu, Jun; Li, Dongdong; Lu, Jia G.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 40
  • DOI: 10.1021/jp1039089

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Density functional study of CO on Rh(111)
journal, October 2004


Adsorption and Decomposition of Dimethyl Methylphosphonate on TiO 2
journal, December 2000

  • Rusu, Camelia N.; Yates, John T.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002560q

Use of methanol as an IR molecular probe to study the surface of polycrystalline ceria
journal, January 1997

  • Badri, Ahmed; Binet, Claude; Lavalley, Jean-Claude
  • Journal of the Chemical Society, Faraday Transactions, Vol. 93, Issue 6
  • DOI: 10.1039/a606628c

FT-IR study of the structure and reactivity of methoxy species on ThO2 and CeO2
journal, March 1988

  • Lamotte, J.; Morávek, V.; Bensitel, M.
  • Reaction Kinetics and Catalysis Letters, Vol. 36, Issue 1
  • DOI: 10.1007/BF02071150

Surface investigation on CexZr1-xO2 compounds
journal, January 1999

  • Daturi, Marco; Binet, Claude; Lavalley, Jean-Claude
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 24
  • DOI: 10.1039/a905758g

The Room Temperature Decomposition Mechanism of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Cerium Oxide − Participation of Nano-Sized Cerium Oxide Domains
journal, February 2004

  • Mitchell, Mark B.; Sheinker, Viktor N.; Cox, Woodrow W.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 5
  • DOI: 10.1021/jp035590c

Interaction of dimethyl methylphosphonate with metal oxides
journal, January 1989


Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides
journal, December 1997

  • Mitchell, Mark B.; Sheinker, V. N.; Mintz, Eric A.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 51
  • DOI: 10.1021/jp972724b

Interactions and Binding Energies of Dimethyl Methylphosphonate and Dimethyl Chlorophosphate with Amorphous Silica
journal, July 2012

  • Wilmsmeyer, Amanda R.; Uzarski, Joshua; Barrie, Patrick J.
  • Langmuir, Vol. 28, Issue 30
  • DOI: 10.1021/la301938f

Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxide
journal, July 1991

  • Li, Yong Xi.; Schlup, John R.; Klabunde, Kenneth J.
  • Langmuir, Vol. 7, Issue 7
  • DOI: 10.1021/la00055a018

Uptake of a Chemical Warfare Agent Simulant (DMMP) on TiO 2 : Reactive Adsorption and Active Site Poisoning
journal, March 2009

  • Panayotov, Dimitar A.; Morris, John R.
  • Langmuir, Vol. 25, Issue 6
  • DOI: 10.1021/la804018b

Experimental and theoretical investigation of the electronic structure of Cu 2 O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy
journal, January 2013

  • Jiang, Peng; Prendergast, David; Borondics, Ferenc
  • The Journal of Chemical Physics, Vol. 138, Issue 2
  • DOI: 10.1063/1.4773583

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
journal, November 2010


Interaction of Cu 3 d and O 2 p states in Mg 1 x Cu x O solid solutions with NaCl structure: X-ray photoelectron and x-ray emission study
journal, August 2000

  • Galakhov, V. R.; Finkelstein, L. D.; Zatsepin, D. A.
  • Physical Review B, Vol. 62, Issue 8
  • DOI: 10.1103/PhysRevB.62.4922

Satellite structure in photoelectron and Auger spectra of copper dihalides
journal, May 1981


X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper
journal, November 1975

  • McIntyre, N. S.; Cook, M. G.
  • Analytical Chemistry, Vol. 47, Issue 13
  • DOI: 10.1021/ac60363a034

Satellite structure in the x-ray photoelectron spectra of CuO Cu2O
journal, May 1979


Electronic structure of Cu 2 O and CuO
journal, December 1988


Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS
journal, January 2011


Resonant photo- and Auger emission at the 3 p threshold of Cu, Cu 2 O, and CuO
journal, July 1982


Tendency towards Local Spin Compensation of Holes in the High- T c Copper Compounds
journal, September 1988


Single-ion approach to the interpretation of the x-ray photoelectron spectra of the valence bands of monoxides of 3d elements
journal, June 1997

  • Finkel’shtein, L. D.; Zabolotskii, E. I.; Galakhov, V. R.
  • Physics of the Solid State, Vol. 39, Issue 6
  • DOI: 10.1134/1.1130140

A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.'s
journal, January 1970

  • Åsbrink, S.; Norrby, L. J.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 26, Issue 1
  • DOI: 10.1107/S0567740870001838

Magnetism in cupric oxide
journal, May 1988

  • Forsyth, J. B.; Brown, P. J.; Wanklyn, B. M.
  • Journal of Physics C: Solid State Physics, Vol. 21, Issue 15
  • DOI: 10.1088/0022-3719/21/15/023

Magnetic neutron scattering study of single-crystal cupric oxide
journal, March 1989


Optical gap of CuO
journal, July 1995

  • Marabelli, F.; Parravicini, G. B.; Salghetti-Drioli, F.
  • Physical Review B, Vol. 52, Issue 3
  • DOI: 10.1103/PhysRevB.52.1433

Quantum-Chemical Study of the Adsorption of DMMP and Sarin on γ-Al 2 O 3
journal, February 2007

  • Bermudez, V. M.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 9
  • DOI: 10.1021/jp066439g

Defect states at organic–inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface
journal, July 2015


Can a Photosensitive Oxide Catalyze Decomposition of Energetic Materials?
journal, January 2017

  • Wang, Fenggong; Tsyshevsky, Roman; Zverev, Anton
  • The Journal of Physical Chemistry C, Vol. 121, Issue 2
  • DOI: 10.1021/acs.jpcc.6b10127

Chemistry of NO 2 on Oxide Surfaces:  Formation of NO 3 on TiO 2 (110) and NO 2 ↔O Vacancy Interactions
journal, October 2001

  • Rodriguez, José A.; Jirsak, Tomas; Liu, Gang
  • Journal of the American Chemical Society, Vol. 123, Issue 39
  • DOI: 10.1021/ja011131i

Thermal Decomposition of a Chemical Warfare Agent Simulant (DMMP) on TiO 2 : Adsorbate Reactions with Lattice Oxygen as Studied by Infrared Spectroscopy
journal, August 2009

  • Panayotov, Dimitar A.; Morris, John R.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 35
  • DOI: 10.1021/jp9036233

A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (.alpha.-Fe2O3) and silicon dioxide
journal, September 1986

  • Henderson, M. A.; Jin, T.; White, J. M.
  • The Journal of Physical Chemistry, Vol. 90, Issue 19
  • DOI: 10.1021/j100410a027

Decomposition of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Iron Oxide
journal, September 1998

  • Tesfai, Teweldemedhin M.; Sheinker, V. N.; Mitchell, Mark B.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 38
  • DOI: 10.1021/jp980690h

Detoxification of chemical warfare agents by CuBTC
journal, November 2013

  • Peterson, Gregory W.; Wagner, George W.
  • Journal of Porous Materials, Vol. 21, Issue 2, p. 121-126
  • DOI: 10.1007/s10934-013-9755-6

    Works referencing / citing this record:

    Adsorption and decomposition of dimethyl methylphosphonate on size-selected (MoO 3 ) 3 clusters
    journal, January 2018

    • Tang, Xin; Hicks, Zachary; Wang, Linjie
    • Physical Chemistry Chemical Physics, Vol. 20, Issue 7
    • DOI: 10.1039/c7cp08427g

    Adsorption and Decomposition of DMMP on Size-Selected (WO 3 ) 3 Clusters
    journal, April 2018