skip to main content


Title: Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [2] ; ORCiD logo [1] ;  [3] ;  [3] ;  [4] ;  [4] ; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); The Univ. of Tennessee, Knoxville, TN (United States)
  3. Univ. of Chicago, Chicago, IL (United States)
  4. Cornell Univ., Ithaca, NY (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Materials Research Letters
Additional Journal Information:
Journal Volume: 6; Journal Issue: 8; Journal ID: ISSN 2166-3831
Taylor and Francis
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; solid solution alloys; neutron diffraction; EXAFS; local structure
OSTI Identifier: