skip to main content

DOE PAGESDOE PAGES

Title: Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.
Authors:
ORCiD logo [1] ;  [2] ; ORCiD logo [3] ;  [4] ;  [5] ;  [6] ;  [7] ;  [5] ;  [7] ; ORCiD logo [5] ;  [7] ;  [7] ; ORCiD logo [7] ;  [7] ;  [3] ;  [8] ;  [9] ; ORCiD logo [4]
  1. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; European XFEL, GmbH, Schenefeld (Germany); Osaka University, Suita, Osaka (Japan). Open and Transdisciplinary Research Initiatives
  2. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering; Univ. of Nevada, Reno, NV (United States). Department of Physics
  3. Institute of Applied Physics, Nizhny Novgorod (Russia)
  4. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; Institute of Applied Physics, Nizhny Novgorod (Russia)
  5. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay
  6. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering and Graduate School of Engineering
  7. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  8. CEA, DAM, DIF, Arpajon (France)
  9. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering, Open and Transdisciplinary Research Initiatives and Graduate School of Engineering
Publication Date:
Report Number(s):
SAND-2018-4540J
Journal ID: ISSN 2041-1723; 662597
Grant/Contract Number:
AC04-94AL85000; SC0008827; NA0003525
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS
OSTI Identifier:
1441466

Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., and Fuchs, J.. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. United States: N. p., Web. doi:10.1038/s41467-017-02436-w.
Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., & Fuchs, J.. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. United States. doi:10.1038/s41467-017-02436-w.
Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., and Fuchs, J.. 2018. "Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons". United States. doi:10.1038/s41467-017-02436-w. https://www.osti.gov/servlets/purl/1441466.
@article{osti_1441466,
title = {Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons},
author = {Nakatsutsumi, M. and Sentoku, Y. and Korzhimanov, A. and Chen, S. N. and Buffechoux, S. and Kon, A. and Atherton, B. and Audebert, P. and Geissel, M. and Hurd, L. and Kimmel, M. and Rambo, P. and Schollmeier, M. and Schwarz, J. and Starodubtsev, M. and Gremillet, L. and Kodama, R. and Fuchs, J.},
abstractNote = {High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm–2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.},
doi = {10.1038/s41467-017-02436-w},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {1}
}