skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

Abstract

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [7];  [5];  [7]; ORCiD logo [5];  [7];  [7]; ORCiD logo [7];  [7];  [3];  [8];  [9]; ORCiD logo [4]
  1. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; European XFEL, GmbH, Schenefeld (Germany); Osaka University, Suita, Osaka (Japan). Open and Transdisciplinary Research Initiatives
  2. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering; Univ. of Nevada, Reno, NV (United States). Department of Physics
  3. Institute of Applied Physics, Nizhny Novgorod (Russia)
  4. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; Institute of Applied Physics, Nizhny Novgorod (Russia)
  5. UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex (France). LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay
  6. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering and Graduate School of Engineering
  7. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  8. CEA, DAM, DIF, Arpajon (France)
  9. Osaka University, Suita, Osaka (Japan). Institute of Laser Engineering, Open and Transdisciplinary Research Initiatives and Graduate School of Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1441466
Report Number(s):
SAND-2018-4540J
Journal ID: ISSN 2041-1723; 662597
Grant/Contract Number:  
AC04-94AL85000; SC0008827; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., and Fuchs, J. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. United States: N. p., 2018. Web. doi:10.1038/s41467-017-02436-w.
Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., & Fuchs, J. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. United States. doi:10.1038/s41467-017-02436-w.
Nakatsutsumi, M., Sentoku, Y., Korzhimanov, A., Chen, S. N., Buffechoux, S., Kon, A., Atherton, B., Audebert, P., Geissel, M., Hurd, L., Kimmel, M., Rambo, P., Schollmeier, M., Schwarz, J., Starodubtsev, M., Gremillet, L., Kodama, R., and Fuchs, J. Thu . "Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons". United States. doi:10.1038/s41467-017-02436-w. https://www.osti.gov/servlets/purl/1441466.
@article{osti_1441466,
title = {Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons},
author = {Nakatsutsumi, M. and Sentoku, Y. and Korzhimanov, A. and Chen, S. N. and Buffechoux, S. and Kon, A. and Atherton, B. and Audebert, P. and Geissel, M. and Hurd, L. and Kimmel, M. and Rambo, P. and Schollmeier, M. and Schwarz, J. and Starodubtsev, M. and Gremillet, L. and Kodama, R. and Fuchs, J.},
abstractNote = {High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm–2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.},
doi = {10.1038/s41467-017-02436-w},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation
journal, December 2015

  • Albertazzi, B.; Chen, S. N.; Antici, P.
  • Physics of Plasmas, Vol. 22, Issue 12
  • DOI: 10.1063/1.4936095

Laser ion acceleration from mass-limited targets with preplasma
journal, May 2016

  • Lezhnin, K. V.; Kamenets, F. F.; Esirkepov, T. Zh.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950836

Space–time characterization of ultra-intense femtosecond laser beams
journal, July 2016


Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition
journal, January 2009


Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction
journal, November 2012


Dynamics of Electric Fields Driving the Laser Acceleration of Multi-MeV Protons
journal, October 2005


Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids
journal, January 2000


P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines
journal, July 2017


Electron Temperature Scaling in Laser Interaction with Solids
journal, November 2011


Transition of Proton Energy Scaling Using an Ultrathin Target Irradiated by Linearly Polarized Femtosecond Laser Pulses
journal, October 2013


Dynamic Control over Mega-Ampere Electron Currents in Metals Using Ionization-Driven Resistive Magnetic Fields
journal, September 2011


Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime
journal, July 2009


Enhanced proton flux in the MeV range by defocused laser irradiation
journal, August 2010


Analytical Model for Ion Acceleration by High-Intensity Laser Pulses
journal, July 2006


Electron and photon production from relativistic laser–plasma interactions
journal, July 2003


Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments
journal, July 2004


High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions
journal, May 2014

  • Green, J. S.; Robinson, A. P. L.; Booth, N.
  • Applied Physics Letters, Vol. 104, Issue 21
  • DOI: 10.1063/1.4879641

High harmonic generation in the relativistic limit
journal, July 2006

  • Dromey, B.; Zepf, M.; Gopal, A.
  • Nature Physics, Vol. 2, Issue 7
  • DOI: 10.1038/nphys338

Thin-foil expansion into a vacuum
journal, November 2005


Not-so-resonant, resonant absorption
journal, July 1987


Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly
journal, February 2014

  • Chen, S. N.; Robinson, A. P. L.; Antici, P.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867181

Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses
journal, October 2007


Absorption of ultra-intense laser pulses
journal, August 1992


Optimization of laser-target interaction for proton acceleration
journal, February 2013

  • d'Humières, E.; Brantov, A.; Yu. Bychenkov, V.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4791655

Ion Acceleration in Multispecies Targets Driven by Intense Laser Radiation Pressure
journal, November 2012


Proton spectra from ultraintense laser–plasma interaction with thin foils: Experiments, theory, and simulation
journal, August 2003

  • Allen, M.; Sentoku, Y.; Audebert, P.
  • Physics of Plasmas, Vol. 10, Issue 8
  • DOI: 10.1063/1.1592154

Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities
journal, March 2016

  • Wilson, R.; King, M.; Gray, R. J.
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4943200

Laser ion acceleration using a solid target coupled with a low-density layer
journal, March 2012


Spatio-temporal modification of femtosecond focal spot under tight focusing condition
journal, January 2015

  • Jeong, Tae Moon; Weber, Stefan; Le Garrec, Bruno
  • Optics Express, Vol. 23, Issue 9
  • DOI: 10.1364/OE.23.011641

Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets
journal, May 2013


Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH 2 Targets
journal, May 2016


Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas
journal, August 2015


Observation of plasma confinement in picosecond laser-plasma interactions
journal, September 1993


Energetic ions from next generation ultraintense ultrashort lasers: Scaling laws for Target Normal Sheath Acceleration
journal, August 2010

  • Passoni, Matteo; Bertagna, Luca; Zani, Alessandro
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 620, Issue 1
  • DOI: 10.1016/j.nima.2010.01.058

Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity
journal, January 2010

  • Nakatsutsumi, M.; Kon, A.; Buffechoux, S.
  • Optics Letters, Vol. 35, Issue 13
  • DOI: 10.1364/OL.35.002314

Petawatt class lasers worldwide
journal, January 2015

  • Danson, Colin; Hillier, David; Hopps, Nicholas
  • High Power Laser Science and Engineering, Vol. 3
  • DOI: 10.1017/hpl.2014.52

Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration
journal, January 2006

  • Murakami, M.; Basko, M. M.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162527

Three-Dimensional Simulations of Ion Acceleration from a Foil Irradiated by a Short-Pulse Laser
journal, April 2001


Magnetic Field Generation in High-Intensity-Laser–Matter Interactions
journal, January 1998


Finite Spot Effects on Radiation Pressure Acceleration from Intense High-Contrast Laser Interactions with Thin Targets
journal, April 2012


Plasma Expansion into a Vacuum
journal, May 2003


Laser acceleration of quasi-monoenergetic MeV ion beams
journal, January 2006

  • Hegelich, B. M.; Albright, B. J.; Cobble, J.
  • Nature, Vol. 439, Issue 7075
  • DOI: 10.1038/nature04400

Fast-Ion Energy-Flux Enhancement from Ultrathin Foils Irradiated by Intense and High-Contrast Short Laser Pulses
journal, October 2008


Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions
journal, July 2010


Proposed Double-Layer Target for the Generation of High-Quality Laser-Accelerated Ion Beams
journal, October 2002


Laser-driven proton scaling laws and new paths towards energy increase
journal, December 2005

  • Fuchs, J.; Antici, P.; d’Humières, E.
  • Nature Physics, Vol. 2, Issue 1
  • DOI: 10.1038/nphys199

Scaling of proton acceleration driven by petawatt-laser–plasma interactions
journal, December 2006

  • Robson, L.; Simpson, P. T.; Clarke, R. J.
  • Nature Physics, Vol. 3, Issue 1
  • DOI: 10.1038/nphys476

Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets
journal, December 2013

  • Antici, P.; Gremillet, L.; Grismayer, T.
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4833618

Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets
journal, March 2007

  • Antici, P.; Fuchs, J.; d’Humières, E.
  • Physics of Plasmas, Vol. 14, Issue 3
  • DOI: 10.1063/1.2480610

Isochoric heating in heterogeneous solid targets with ultrashort laser pulses
journal, December 2007

  • Sentoku, Y.; Kemp, A. J.; Presura, R.
  • Physics of Plasmas, Vol. 14, Issue 12
  • DOI: 10.1063/1.2816439

Measuring huge magnetic fields
journal, January 2002

  • Tatarakis, M.; Watts, I.; Beg, F. N.
  • Nature, Vol. 415, Issue 6869
  • DOI: 10.1038/415280a

Ultrafast Electron Radiography of Magnetic Fields in High-Intensity Laser-Solid Interactions
journal, January 2013


Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses
journal, February 2004


Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors
journal, May 2016


Laser Ion-Acceleration Scaling Laws Seen in Multiparametric Particle-in-Cell Simulations
journal, March 2006


Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets
journal, May 2007

  • Yin, L.; Albright, B. J.; Hegelich, B. M.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436857

Effects of target charging and ion emission on the energy spectrum of emitted electrons
journal, May 2011

  • Link, A.; Freeman, R. R.; Schumacher, D. W.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3587123