skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

Abstract

In this paper, the band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe 2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

Authors:
 [1];  [2];  [3];  [4];  [2];  [2];  [2];  [5];  [5];  [6];  [7];  [6];  [2]
  1. Univ. of Texas at Austin, Austin, TX (United States); National Institute of Standards & Technology, Boulder, CO (United States)
  2. Univ. of Texas at Austin, Austin, TX (United States)
  3. Feng Chia Univ., Taichung (Taiwan)
  4. King Abdullah Univ. of Science & Technology (KAUST), Thuwal (Saudi Arabia)
  5. Univ. of Washington, Seattle, WA (United States)
  6. Technische Univ. Berlin, Berlin (Germany)
  7. Chalmers Univ. of Technology, Gothenburg (Sweden)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1441157
Grant/Contract Number:  
SC0008145
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Moody, Galan, Dass, Chandriker Kavir, Hao, Kai, Chen, Chang -Hsiao, Li, Lain -Jong, Singh, Akshay, Tran, Kha, Clark, Genevieve, Xu, Xiaodong, Berghauser, Gunnar, Malic, Ermin, Knorr, Andreas, and Li, Xiaoqin. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. United States: N. p., 2015. Web. doi:10.1038/ncomms9315.
Moody, Galan, Dass, Chandriker Kavir, Hao, Kai, Chen, Chang -Hsiao, Li, Lain -Jong, Singh, Akshay, Tran, Kha, Clark, Genevieve, Xu, Xiaodong, Berghauser, Gunnar, Malic, Ermin, Knorr, Andreas, & Li, Xiaoqin. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. United States. doi:10.1038/ncomms9315.
Moody, Galan, Dass, Chandriker Kavir, Hao, Kai, Chen, Chang -Hsiao, Li, Lain -Jong, Singh, Akshay, Tran, Kha, Clark, Genevieve, Xu, Xiaodong, Berghauser, Gunnar, Malic, Ermin, Knorr, Andreas, and Li, Xiaoqin. Fri . "Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides". United States. doi:10.1038/ncomms9315. https://www.osti.gov/servlets/purl/1441157.
@article{osti_1441157,
title = {Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides},
author = {Moody, Galan and Dass, Chandriker Kavir and Hao, Kai and Chen, Chang -Hsiao and Li, Lain -Jong and Singh, Akshay and Tran, Kha and Clark, Genevieve and Xu, Xiaodong and Berghauser, Gunnar and Malic, Ermin and Knorr, Andreas and Li, Xiaoqin},
abstractNote = {In this paper, the band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.},
doi = {10.1038/ncomms9315},
journal = {Nature Communications},
number = 1,
volume = 6,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 156 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides
journal, May 2012


Valley dynamics probed through charged and neutral exciton emission in monolayer WSe 2
journal, August 2014


Transient nonlinear optical response from excitation induced dephasing in GaAs
journal, August 1993


Giant Enhancement of the Optical Second-Harmonic Emission of WSe 2 Monolayers by Laser Excitation at Exciton Resonances
journal, March 2015


Mechanism of excitonic dephasing in layered InSe crystals
journal, March 2014


Optical generation of excitonic valley coherence in monolayer WSe2
journal, August 2013

  • Jones, Aaron M.; Yu, Hongyi; Ghimire, Nirmal J.
  • Nature Nanotechnology, Vol. 8, Issue 9
  • DOI: 10.1038/nnano.2013.151

Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides
journal, March 2015

  • Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl503799t

Tightly Bound Excitons in Monolayer WSe 2
journal, July 2014


Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Optical 2-D Fourier Transform Spectroscopy of Excitons in Semiconductor Nanostructures
journal, January 2012

  • Cundiff, Steven T.; Bristow, Alan D.; Siemens, Mark
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, Issue 1
  • DOI: 10.1109/JSTQE.2011.2123876

Enhanced radiative recombination of free excitons in GaAs quantum wells
journal, October 1991


Electric field dependence of optical absorption near the band gap of quantum-well structures
journal, July 1985


Coherent Electronic Coupling in Atomically Thin MoSe 2
journal, May 2014


Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Low-temperature photocarrier dynamics in monolayer MoS 2
journal, September 2011

  • Korn, T.; Heydrich, S.; Hirmer, M.
  • Applied Physics Letters, Vol. 99, Issue 10
  • DOI: 10.1063/1.3636402

Strong light–matter coupling in two-dimensional atomic crystals
journal, December 2014


Resonance lineshapes in two-dimensional
Fourier transform spectroscopy
journal, January 2010

  • Siemens, Mark E.; Moody, Galan; Li, Hebin
  • Optics Express, Vol. 18, Issue 17
  • DOI: 10.1364/OE.18.017699

Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities
journal, November 2014

  • Schwarz, S.; Dufferwiel, S.; Walker, P. M.
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503312x

Exciton–polariton spin switches
journal, April 2010


Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells
journal, December 1986


Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
journal, December 2012

  • Zhao, Weijie; Ghorannevis, Zohreh; Chu, Leiqiang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305275h

Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Large-Area Synthesis of Highly Crystalline WSe 2 Monolayers and Device Applications
journal, December 2013

  • Huang, Jing-Kai; Pu, Jiang; Hsu, Chang-Lung
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405719x

Radiative lifetime of free excitons in quantum wells
journal, March 1991

  • Andreani, Lucio Claudio; Tassone, Francesco; Bassani, Franco
  • Solid State Communications, Vol. 77, Issue 9
  • DOI: 10.1016/0038-1098(91)90761-J

Control of valley polarization in monolayer MoS2 by optical helicity
journal, June 2012


Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
journal, February 2015

  • Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7242

Collision broadening of two-dimensional excitons in a GaAs single quantum well
journal, September 1989


    Works referencing / citing this record:

    Evidence for line width and carrier screening effects on excitonic valley relaxation in 2D semiconductors
    journal, July 2018


    Single-scan acquisition of multiple multidimensional spectra
    journal, January 2019