DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Local Quantum Phase Transition in YFe2Al10

Abstract

Here, a phase transition occurs when correlated regions of a new phase grow to span the system and the fluctuations within the correlated regions become long-lived. Here we present neutron scattering measurements showing that this conventional picture must be replaced by a new paradigm in YFe2Al10, a compound that forms naturally very close to a T = 0 quantum phase transition. Fully quantum mechanical fluctuations of localized moments are found to diverge at low energies and temperatures, however the fluctuating moments are entirely without spatial correlations. Zero temperature order in YFe2Al10 is achieved by a new and entirely local type of quantum phase transition that may originate with the creation of the moments themselves.

Authors:
 [1]; ORCiD logo [2];  [3];  [2];  [4];  [5];  [1]
  1. Texas A & M Univ., College Station, TX (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  5. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1440349
Report Number(s):
BNL-205727-2018-JAAM
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 27; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Gannon, W J., Zaliznyak, Igor A., Wu, L. S., Tsvelik, A. M., Qiu, Y., Rodriguez-Rivera, J. A., and Aronson, M. C. A Local Quantum Phase Transition in YFe2Al10. United States: N. p., 2018. Web. doi:10.1073/pnas.1721493115.
Gannon, W J., Zaliznyak, Igor A., Wu, L. S., Tsvelik, A. M., Qiu, Y., Rodriguez-Rivera, J. A., & Aronson, M. C. A Local Quantum Phase Transition in YFe2Al10. United States. https://doi.org/10.1073/pnas.1721493115
Gannon, W J., Zaliznyak, Igor A., Wu, L. S., Tsvelik, A. M., Qiu, Y., Rodriguez-Rivera, J. A., and Aronson, M. C. Mon . "A Local Quantum Phase Transition in YFe2Al10". United States. https://doi.org/10.1073/pnas.1721493115. https://www.osti.gov/servlets/purl/1440349.
@article{osti_1440349,
title = {A Local Quantum Phase Transition in YFe2Al10},
author = {Gannon, W J. and Zaliznyak, Igor A. and Wu, L. S. and Tsvelik, A. M. and Qiu, Y. and Rodriguez-Rivera, J. A. and Aronson, M. C.},
abstractNote = {Here, a phase transition occurs when correlated regions of a new phase grow to span the system and the fluctuations within the correlated regions become long-lived. Here we present neutron scattering measurements showing that this conventional picture must be replaced by a new paradigm in YFe2Al10, a compound that forms naturally very close to a T = 0 quantum phase transition. Fully quantum mechanical fluctuations of localized moments are found to diverge at low energies and temperatures, however the fluctuating moments are entirely without spatial correlations. Zero temperature order in YFe2Al10 is achieved by a new and entirely local type of quantum phase transition that may originate with the creation of the moments themselves.},
doi = {10.1073/pnas.1721493115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 27,
volume = 115,
place = {United States},
year = {Mon Jun 18 00:00:00 EDT 2018},
month = {Mon Jun 18 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Spatially localized magnetic fluctuations in YFe2Al10. (A) The intensity of neutrons scattered with energy transfer 0.5 meV in the [0,K,L] plane at 0.07 K in fields of 0.025 T (left) and 9 T (right), and their difference $I$(0 T)-$I$(9 T) (B). The tails of nuclear Bragg peaks aremore » clearly observed in (A) at integer values of K and L. A diffuse ridge of scattering is evident along [0,0,L] at $q$$K$ = 0 reciprocal lattice units (rlu). Data are monitor normalized. (C) Wave vector $q$$K$ dependence of the $q$$L$ integrated intensity $I$( $q$$K$) is better described by the YFe2Al10 magnetic form factor $F ^{2}_{xz, yz}$($q$$K$) from electronic structure calculations (black line, also Supplementary Information) than isotropic Fe2+ form factor (green line). Both form factors are scaled to the data. Strong anisotropy in the intensity indicates that $d$$xz,yz$ orbitals dominate. (D) The $T$ = 0.07 K structure factor $S$($q$$K$) is isolated for different fixed energies by dividing $I$($q$$K$) by $F ^{2}_{xz, yz}$($q$$K$) . Solid lines are obtained by fitting $I$($q$$K$) to a Lorentzian and dividing by the computed $F ^{2}_{xz, yz}$($q$$K$), demonstrating that $S$($q$$K$) is independent of wave vector $q$$K$. Inset: The correspondence between the scattering wave vectors $q$$K$ and $q$$L$ and the $ac$-planes containing the nearly square Fe-nets in YFe2Al10. Magnetic field is oriented in the critical $ac$ plane along the (100) direction. All data were measured on MACS. Error bars in each figure represent one standard deviation.« less

Save / Share:

Works referenced in this record:

Quantum critical phenomena
journal, August 1976


Equilibrium behaviour of quantum Ising spin glass
journal, March 1995


Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2
journal, October 2011

  • Singh, D. K.; Thamizhavel, A.; Lynn, J. W.
  • Scientific Reports, Vol. 1, Issue 1
  • DOI: 10.1038/srep00117

Strange metal without magnetic criticality
journal, July 2015


Hall-effect evolution across a heavy-fermion quantum critical point
journal, December 2004


Theory of dynamic critical phenomena
journal, July 1977


Quantum critical fluctuations in layered YFe 2 Al 10
journal, September 2014

  • Wu, L. S.; Kim, M. S.; Park, K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 39
  • DOI: 10.1073/pnas.1413112111

Quantum criticality in the two-dimensional dissipative quantum XY model
journal, December 2016


Non-Fermi-liquid behavior in U and Ce alloys: Criticality, disorder, dissipation, and Griffiths-McCoy singularities
journal, December 2000


Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets
journal, October 2015


Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2
journal, May 2009

  • Friedemann, S.; Westerkamp, T.; Brando, M.
  • Nature Physics, Vol. 5, Issue 7
  • DOI: 10.1038/nphys1299

Anomalous quantum critical spin dynamics in YFe 2 Al 10
journal, April 2018


Extended versus Local Fluctuations in Quantum Critical C e ( R u 1 x F e x ) 2 G e 2 ( x = x c = 0.76 )
journal, August 2003


Onset of antiferromagnetism in heavy-fermion metals
journal, September 2000

  • Schröder, A.; Aeppli, G.; Coldea, R.
  • Nature, Vol. 407, Issue 6802
  • DOI: 10.1038/35030039

Evidence for a Non-Fermi-Liquid Phase in Ge-Substituted YbRh 2 Si 2
journal, May 2010


MACS—a new high intensity cold neutron spectrometer at NIST
journal, January 2008


Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
journal, September 2011

  • Yin, Z. P.; Haule, K.; Kotliar, G.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3120

Antiferromagnetic criticality at a heavy-fermion quantum phase transition
journal, September 2009

  • Knafo, W.; Raymond, S.; Lejay, P.
  • Nature Physics, Vol. 5, Issue 10
  • DOI: 10.1038/nphys1374

Crystal structure of yttrium iron aluminium (1/2/10), YFe2Al10
journal, September 2012

  • Kerkau, Alexander
  • Zeitschrift für Kristallographie - New Crystal Structures, Vol. 227, Issue 3
  • DOI: 10.1524/ncrs.2012.0195

Disorder-driven non-Fermi liquid behaviour of correlated electrons
journal, August 2005


Locally critical quantum phase transitions in strongly correlated metals
journal, October 2001

  • Si, Qimiao; Rabello, Silvio; Ingersent, Kevin
  • Nature, Vol. 413, Issue 6858
  • DOI: 10.1038/35101507

Field-tuned Fermi liquid in quantum critical YFe 2 Al 10
journal, September 2011


Phenomenology of the normal state of Cu-O high-temperature superconductors
journal, October 1989


Orbital-Selective Mott Transition out of Band Degeneracy Lifting
journal, March 2009


Weak magnetism and non-Fermi liquids near heavy-fermion critical points
journal, January 2004


Random transverse field Ising spin chains
journal, July 1992


Non-Fermi-Liquid Scaling of the Magnetic Response in UCu 5 x Pd x ( x = 1 , 1.5 )
journal, July 1995


Mott Transition and Kondo Screening in f -Electron Metals
journal, August 2005


Quantum Griffiths effects in itinerant Heisenberg magnets
journal, July 2005


Quantum magnetism and criticality
journal, March 2008


Ternary aluminides LnT2Al10 (Ln=Y, La–Nd, Sm, Gd–Lu andT=Fe, Ru, Os) with YbFe2Al10 type structure and magneticproperties of the iron-containing series
journal, January 1998

  • Thiede, Verena M. T.; Ebel, Thomas; Jeitschko, Wolfgang
  • Journal of Materials Chemistry, Vol. 8, Issue 1
  • DOI: 10.1039/a705854c

Magnetic fluctuations in La 1.95 Ba 0.05 CuO 4
journal, February 1991


Quantum Criticality Without Tuning in the Mixed Valence Compound  -YbAlB4
journal, January 2011


Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling
journal, February 2009


Orbital-Selective Mott Transitions: Heavy Fermions and Beyond
journal, August 2010


Effect of a nonzero temperature on quantum critical points in itinerant fermion systems
journal, September 1993


How do Fermi liquids get heavy and die?
journal, August 2001


Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2
journal, December 2009

  • Inosov, D. S.; Park, J. T.; Bourges, P.
  • Nature Physics, Vol. 6, Issue 3
  • DOI: 10.1038/nphys1483

Scaling Behavior of the Generalized Susceptibility in La 2 x Sr x Cu O 4 + y
journal, September 1991


Phase diagram and correlation functions of the two-dimensional dissipative quantum XY model
journal, November 2016


Orbital-selective Mott-insulator transition in Ca 2 - x Sr x RuO 4
journal, February 2002

  • Anisimov, V. I.; Nekrasov, I. A.; Kondakov, D. E.
  • The European Physical Journal B, Vol. 25, Issue 2
  • DOI: 10.1140/epjb/e20020021

Critical Fermi surfaces and non-Fermi liquid metals
journal, July 2008


Spin Fluctuations in Itinerant Electron Magnetism
book, January 1985


Onset of antiferromagnetism in heavy-fermion metals
journal, September 2000

  • Schröder, A.; Aeppli, G.; Coldea, R.
  • Nature, Vol. 407, Issue 6802
  • DOI: 10.1038/35030039

Hall-effect evolution across a heavy-fermion quantum critical point
journal, December 2004


Absolute cross-section normalization of magnetic neutron scattering data
journal, August 2013

  • Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.
  • Review of Scientific Instruments, Vol. 84, Issue 8
  • DOI: 10.1063/1.4818323

Strange metal without magnetic criticality
journal, July 2015


Crystal structure of yttrium iron aluminium (1/2/10), YFe2Al10
journal, September 2012

  • Kerkau, Alexander
  • Zeitschrift für Kristallographie - New Crystal Structures, Vol. 227, Issue 3
  • DOI: 10.1524/ncrs.2012.0195

Evidence for a Non-Fermi-Liquid Phase in Ge-Substituted YbRh2Si2
text, January 2010


High-throughput electronic band structure calculations: challenges and tools
text, January 2010


Disorder-Driven Non-Fermi Liquid Behavior of Correlated Electrons
text, January 2005