DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction

Abstract

TheM2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across amembrane. Ordered water molecules arranged in "wires" inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. Themore » number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [4];  [5];  [6];  [2];  [7];  [1];  [8];  [4];  [4];  [9];  [10];  [4];  [6];  [4];  [3];  [11] more »;  [11];  [4];  [12];  [5]; ORCiD logo [2];  [1] « less
  1. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158,
  2. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158,
  3. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan,
  4. SPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan,
  5. Structural Biology Research Center, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan,
  6. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
  7. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853,
  8. Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305,, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305,, Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304,, Department of Photon Science, Stanford University, Stanford, CA 94305,, Department of Structural Biology, Stanford University, Stanford, CA 94305,
  9. SPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan,, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan,
  10. SPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan,, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan,
  11. Experimental Instrumentation Team, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan,
  12. SPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan,, Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1376273
Alternate Identifier(s):
OSTI ID: 1417656; OSTI ID: 1439226
Grant/Contract Number:  
AC02-76SF00515; GM122603; GM117593; OD009180; GM110580; STC-1231306; GRFP; 1S10RR027234-01; GM117126; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 114 Journal Issue: 51; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; XFEL; proton channel; influenza; membrane protein

Citation Formats

Thomaston, Jessica L., Woldeyes, Rahel A., Nakane, Takanori, Yamashita, Ayumi, Tanaka, Tomoyuki, Koiwai, Kotaro, Brewster, Aaron S., Barad, Benjamin A., Chen, Yujie, Lemmin, Thomas, Uervirojnangkoorn, Monarin, Arima, Toshi, Kobayashi, Jun, Masuda, Tetsuya, Suzuki, Mamoru, Sugahara, Michihiro, Sauter, Nicholas K., Tanaka, Rie, Nureki, Osamu, Tono, Kensuke, Joti, Yasumasa, Nango, Eriko, Iwata, So, Yumoto, Fumiaki, Fraser, James S., and DeGrado, William F. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction. United States: N. p., 2017. Web. doi:10.1073/pnas.1705624114.
Thomaston, Jessica L., Woldeyes, Rahel A., Nakane, Takanori, Yamashita, Ayumi, Tanaka, Tomoyuki, Koiwai, Kotaro, Brewster, Aaron S., Barad, Benjamin A., Chen, Yujie, Lemmin, Thomas, Uervirojnangkoorn, Monarin, Arima, Toshi, Kobayashi, Jun, Masuda, Tetsuya, Suzuki, Mamoru, Sugahara, Michihiro, Sauter, Nicholas K., Tanaka, Rie, Nureki, Osamu, Tono, Kensuke, Joti, Yasumasa, Nango, Eriko, Iwata, So, Yumoto, Fumiaki, Fraser, James S., & DeGrado, William F. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction. United States. https://doi.org/10.1073/pnas.1705624114
Thomaston, Jessica L., Woldeyes, Rahel A., Nakane, Takanori, Yamashita, Ayumi, Tanaka, Tomoyuki, Koiwai, Kotaro, Brewster, Aaron S., Barad, Benjamin A., Chen, Yujie, Lemmin, Thomas, Uervirojnangkoorn, Monarin, Arima, Toshi, Kobayashi, Jun, Masuda, Tetsuya, Suzuki, Mamoru, Sugahara, Michihiro, Sauter, Nicholas K., Tanaka, Rie, Nureki, Osamu, Tono, Kensuke, Joti, Yasumasa, Nango, Eriko, Iwata, So, Yumoto, Fumiaki, Fraser, James S., and DeGrado, William F. Wed . "XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction". United States. https://doi.org/10.1073/pnas.1705624114.
@article{osti_1376273,
title = {XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction},
author = {Thomaston, Jessica L. and Woldeyes, Rahel A. and Nakane, Takanori and Yamashita, Ayumi and Tanaka, Tomoyuki and Koiwai, Kotaro and Brewster, Aaron S. and Barad, Benjamin A. and Chen, Yujie and Lemmin, Thomas and Uervirojnangkoorn, Monarin and Arima, Toshi and Kobayashi, Jun and Masuda, Tetsuya and Suzuki, Mamoru and Sugahara, Michihiro and Sauter, Nicholas K. and Tanaka, Rie and Nureki, Osamu and Tono, Kensuke and Joti, Yasumasa and Nango, Eriko and Iwata, So and Yumoto, Fumiaki and Fraser, James S. and DeGrado, William F.},
abstractNote = {TheM2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across amembrane. Ordered water molecules arranged in "wires" inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.},
doi = {10.1073/pnas.1705624114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 51,
volume = 114,
place = {United States},
year = {Wed Aug 23 00:00:00 EDT 2017},
month = {Wed Aug 23 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1705624114

Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biomolecular cryocrystallography: Structural changes during flash-cooling
journal, March 2004


Cheetah : software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data
journal, May 2014

  • Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.
  • Journal of Applied Crystallography, Vol. 47, Issue 3
  • DOI: 10.1107/S1600576714007626

Linking Crystallographic Model and Data Quality
journal, May 2012


Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus
journal, January 2009

  • Khurana, E.; Peraro, M. D.; DeVane, R.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 4
  • DOI: 10.1073/pnas.0811720106

The Mechanism of Hydrated Proton Transport in Water
journal, December 2000

  • Day, Tyler J. F.; Schmitt, Udo W.; Voth, Gregory A.
  • Journal of the American Chemical Society, Vol. 122, Issue 48
  • DOI: 10.1021/ja002506n

Multiscale simulation reveals a multifaceted mechanism of proton permeation through the influenza A M2 proton channel
journal, June 2014

  • Liang, Ruibin; Li, Hui; Swanson, Jessica M. J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 26
  • DOI: 10.1073/pnas.1401997111

Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells.
journal, July 1996


New Python-based methods for data processing
journal, June 2013

  • Sauter, Nicholas K.; Hattne, Johan; Grosse-Kunstleve, Ralf W.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000863

Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy
journal, March 2011

  • Ghosh, A.; Qiu, J.; DeGrado, W. F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 15
  • DOI: 10.1073/pnas.1103027108

pH-Dependent Tetramerization and Amantadine Binding of the Transmembrane Helix of M2 from the Influenza A Virus
journal, November 2000

  • Salom, David; Hill, Blake R.; Lear, James D.
  • Biochemistry, Vol. 39, Issue 46
  • DOI: 10.1021/bi001799u

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions
journal, August 1933

  • Bernal, J. D.; Fowler, R. H.
  • The Journal of Chemical Physics, Vol. 1, Issue 8
  • DOI: 10.1063/1.1749327

Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel
journal, December 2007

  • Li, Conggang; Qin, Huajun; Gao, Fei Philip
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1768, Issue 12
  • DOI: 10.1016/j.bbamem.2007.08.025

The Influenza M2 Cytoplasmic Tail Changes the Proton-Exchange Equilibria and the Backbone Conformation of the Transmembrane Histidine Residue to Facilitate Proton Conduction
journal, April 2015

  • Liao, Shu Y.; Yang, Yu; Tietze, Daniel
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b02510

Molecular mechanisms for proton transport in membranes.
journal, January 1978

  • Nagle, J. F.; Morowitz, H. J.
  • Proceedings of the National Academy of Sciences, Vol. 75, Issue 1
  • DOI: 10.1073/pnas.75.1.298

Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue
journal, October 1995


Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness
journal, January 2011

  • Hu, Fanghao; Luo, Wenbin; Cady, Sarah D.
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1808, Issue 1
  • DOI: 10.1016/j.bbamem.2010.09.014

Breaking the indexing ambiguity in serial crystallography
journal, December 2013

  • Brehm, Wolfgang; Diederichs, Kay
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 1
  • DOI: 10.1107/S1399004713025431

Structural basis for the function and inhibition of an influenza virus proton channel
journal, January 2008

  • Stouffer, Amanda L.; Acharya, Rudresh; Salom, David
  • Nature, Vol. 451, Issue 7178
  • DOI: 10.1038/nature06528

Proton Association Constants of His 37 in the Influenza-A M2 18–60 Dimer-of-Dimers
journal, September 2014

  • Colvin, Michael T.; Andreas, Loren B.; Chou, James J.
  • Biochemistry, Vol. 53, Issue 38
  • DOI: 10.1021/bi5005393

Ion selectivity and activation of the M2 ion channel of influenza virus
journal, March 1996


Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel
journal, July 2009

  • Ma, C.; Polishchuk, A. L.; Ohigashi, Y.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 30
  • DOI: 10.1073/pnas.0905726106

Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser
journal, April 2015

  • Tono, Kensuke; Nango, Eriko; Sugahara, Michihiro
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004464

Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus
journal, January 2013

  • Wang, Jun; Wu, Yibing; Ma, Chunlong
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 4
  • DOI: 10.1073/pnas.1216526110

High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction
journal, November 2015

  • Thomaston, Jessica L.; Alfonso-Prieto, Mercedes; Woldeyes, Rahel A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 46
  • DOI: 10.1073/pnas.1518493112

Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Crystal structure of the drug-resistant S31N influenza M2 proton channel: Crystal Structure of M2 S31N Proton Channel
journal, May 2016

  • Thomaston, Jessica L.; DeGrado, William F.
  • Protein Science, Vol. 25, Issue 8
  • DOI: 10.1002/pro.2937

Insight into the Mechanism of the Influenza A Proton Channel from a Structure in a Lipid Bilayer
journal, October 2010


Acid activation mechanism of the influenza A M2 proton channel
journal, October 2016

  • Liang, Ruibin; Swanson, Jessica M. J.; Madsen, Jesper J.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1615471113

Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus
journal, August 2010

  • Acharya, R.; Carnevale, V.; Fiorin, G.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 34
  • DOI: 10.1073/pnas.1007071107

Structure and mechanism of the M2 proton channel of influenza A virus
journal, January 2008


Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
journal, December 2011


Mechanisms of Proton Conduction and Gating in Influenza M2 Proton Channels from Solid-State NMR
journal, October 2010


Data processing pipeline for serial femtosecond crystallography at SACLA
journal, April 2016

  • Nakane, Takanori; Joti, Yasumasa; Tono, Kensuke
  • Journal of Applied Crystallography, Vol. 49, Issue 3
  • DOI: 10.1107/S1600576716005720

Kinetic Analysis of the M2 Proton Conduction of the Influenza Virus
journal, December 2010

  • Pielak, Rafal M.; Chou, James J.
  • Journal of the American Chemical Society, Vol. 132, Issue 50
  • DOI: 10.1021/ja108458u

NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
journal, October 2011

  • Hu, Fanghao; Schmidt-Rohr, Klaus; Hong, Mei
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja2081185

Direct Measurement of the Influenza A Virus M2 Protein Ion Channel Activity in Mammalian Cells
journal, November 1994


Influenza Virus M2 Protein Mediates ESCRT-Independent Membrane Scission
journal, September 2010


Multiple Proton Confinement in the M2 Channel from the Influenza A Virus
journal, October 2010

  • Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 48
  • DOI: 10.1021/jp107431g

Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
journal, December 2011


Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography
journal, February 2014

  • Weierstall, Uwe; James, Daniel; Wang, Chong
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4309

Proton and cation transport activity of the M2 proton channel from influenza A virus
journal, August 2010

  • Leiding, T.; Wang, J.; Martinsson, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 35
  • DOI: 10.1073/pnas.1009997107

Histidines, heart of the hydrogen ion channel from influenza A virus: Toward an understanding of conductance and proton selectivity
journal, April 2006

  • Hu, J.; Fu, R.; Nishimura, K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 18
  • DOI: 10.1073/pnas.0601944103

High-density grids for efficient data collection from multiple crystals
journal, January 2016

  • Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto
  • Acta Crystallographica Section D Structural Biology, Vol. 72, Issue 1, p. 2-11
  • DOI: 10.1107/S2059798315020847

Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
journal, October 2016

  • Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.
  • eLife, Vol. 5
  • DOI: 10.7554/eLife.18740

Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers
journal, February 2010

  • Cady, Sarah D.; Schmidt-Rohr, Klaus; Wang, Jun
  • Nature, Vol. 463, Issue 7281
  • DOI: 10.1038/nature08722

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

The Grotthuss mechanism
journal, October 1995


Influenza Virus A M2 Protein Generates Negative Gaussian Membrane Curvature Necessary for Budding and Scission
journal, September 2013

  • Schmidt, Nathan W.; Mishra, Abhijit; Wang, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja400146z

Permeation and Activation of the M 2 Ion Channel of Influenza A Virus
journal, July 2000

  • Mould, Jorgen A.; Drury, Jason E.; Frings, Stephan M.
  • Journal of Biological Chemistry, Vol. 275, Issue 40
  • DOI: 10.1074/jbc.M003663200

Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin
journal, September 1978

  • Levitt, David G.; Elias, Steven R.; Hautman, Joseph M.
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 512, Issue 2
  • DOI: 10.1016/0005-2736(78)90266-3

Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography
journal, August 2014


Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes
journal, September 1978


Proton Transport Behavior through the Influenza A M2 Channel: Insights from Molecular Simulation
journal, November 2007


The Gate of the Influenza Virus M 2 Proton Channel Is Formed by a Single Tryptophan Residue
journal, August 2002

  • Tang, Yajun; Zaitseva, Florina; Lamb, Robert A.
  • Journal of Biological Chemistry, Vol. 277, Issue 42
  • DOI: 10.1074/jbc.M206582200

Activation and Proton Transport Mechanism in Influenza A M2 Channel
journal, November 2013


Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals
journal, March 2015

  • Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.
  • eLife, Vol. 4
  • DOI: 10.7554/eLife.05421

The Formation and Dynamics of Proton Wires in Channel Environments
journal, April 2001


The M2 Ectodomain Is Important for Its Incorporation into Influenza A Virions
journal, March 1998


A Secondary Gate As a Mechanism for Inhibition of the M2 Proton Channel by Amantadine
journal, July 2008

  • Yi, Myunggi; Cross, Timothy A.; Zhou, Huan-Xiang
  • The Journal of Physical Chemistry B, Vol. 112, Issue 27
  • DOI: 10.1021/jp800171m

Functional Studies and Modeling of Pore-Lining Residue Mutants of the Influenza A Virus M2 Ion Channel
journal, February 2010

  • Balannik, Victoria; Carnevale, Vincenzo; Fiorin, Giacomo
  • Biochemistry, Vol. 49, Issue 4
  • DOI: 10.1021/bi901799k