skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 18, 2018

Title: Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2)

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most important pathogens affecting the swine industry worldwide. Co-infections are common on a global scale, resulting in pork production losses through reducing weight gain and causing respiratory disease in growing pigs. Our initial work demonstrated that the fecal microbiome was associated with clinical outcome of pigs 70 days post-infection (dpi) with PRRSV and PCV2. However, it remained uncertain if microbiome characteristics could predispose response to viral infection. The purpose of this study was to determine if microbiome characteristics present at the time of virus exposure were associated with outcome after co-infection. Using the Lawrence Livermore Microbial Detection Array, we profiled the microbiome in feces prior to infection from pigs identified retrospectively as having high or low growth rates after co-infection. High growth rate pigs had less severe interstitial pneumonia, reduced virus replication, and a significant increase in average daily weight gain throughout the study. At the level of the fecal microbiome, high growth rate pigs had increased microbial diversity on both a family and species level. Shifts in the microbiome composition of high growth rate pigs included reduced Methanobacteriaceae species, increased Ruminococcaceae species,more » and increased Streptococcaceae species when compared to low growth rate pigs. The results of the study indicate that both microbiome diversity and composition at the time of virus exposure may play a role in the subsequent response of pigs to PRRSV/PCV2 co-infection.« less
Authors:
 [1] ;  [2] ;  [2] ;  [3] ;  [1] ;  [3]
  1. Kansas State Univ., Manhattan, KS (United States). Dept. of Diagnostic Medicine/Pathobiology and College of Veterinary Medicine
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences Directorate
  3. Kansas State Univ., Manhattan, KS (United States). Dept. of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine and Kansas State Veterinary Diagnostic Lab.
Publication Date:
Report Number(s):
LLNL-JRNL-736694
Journal ID: ISSN 0378-1135
Grant/Contract Number:
AC52-07NA27344; 2013-68004-20362; 14ERD081
Type:
Accepted Manuscript
Journal Name:
Veterinary Microbiology
Additional Journal Information:
Journal Volume: 208; Journal Issue: C; Journal ID: ISSN 0378-1135
Publisher:
Elsevier
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE; USDA; Kansas State Univ., Manhattan, KS (United States). National Bio and Agro-Defense Facility (NBAF)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; Microbiome; Swine; Porcine reproductive and respiratory syndrome virus; Porcine circovirus type 2; Weight gain; Microbial diversity
OSTI Identifier:
1438602