skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast Li-Ion Transport in Amorphous Li 2Si 2O 5: An Ab Initio Molecular Dynamics Simulation

Abstract

The present study reports an ab-initio molecular dynamics (AIMD) simulation of ionic diffusion in the amorphous Li 2Si 2O 5 in a temperature range of 573–823 K. The results show that the amorphous Li 2Si 2O 5 is primarily a Li + conductor with negligible O 2- and Si 4+ contributions. The obtained activation energy of 0.47 eV for Li + diffusion is higher than Na + in the analogue amorphous Na 2Si 2O 5, but close to other types of Li + conductors. The predicted Li + conductivity is on the order of 10 -2 S·cm -1 at 623–823 K. Our simulations also reveal that Li + in the amorphous Li 2Si 2O 5 diffuses via a hopping mechanism between the nearest sites in the channels formed by two adjacent SiO 4 layers.

Authors:
 [1];  [2];  [2]
  1. Jiangxi Normal Univ., Nanchang, Jiangxi (China). Dept. of Physics; Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
  2. Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Univ. of South Carolina, Columbia, SC (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); National Science Foundation (NSF)
OSTI Identifier:
1437308
Grant/Contract Number:  
AR0000492
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 7; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 42 ENGINEERING

Citation Formats

Lei, Xueling, Wang, Jie, and Huang, Kevin. Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation. United States: N. p., 2016. Web. doi:10.1149/2.1291607jes.
Lei, Xueling, Wang, Jie, & Huang, Kevin. Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation. United States. doi:10.1149/2.1291607jes.
Lei, Xueling, Wang, Jie, and Huang, Kevin. Tue . "Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation". United States. doi:10.1149/2.1291607jes. https://www.osti.gov/servlets/purl/1437308.
@article{osti_1437308,
title = {Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation},
author = {Lei, Xueling and Wang, Jie and Huang, Kevin},
abstractNote = {The present study reports an ab-initio molecular dynamics (AIMD) simulation of ionic diffusion in the amorphous Li2Si2O5 in a temperature range of 573–823 K. The results show that the amorphous Li2Si2O5 is primarily a Li+ conductor with negligible O2- and Si4+ contributions. The obtained activation energy of 0.47 eV for Li+ diffusion is higher than Na+ in the analogue amorphous Na2Si2O5, but close to other types of Li+ conductors. The predicted Li+ conductivity is on the order of 10-2 S·cm-1 at 623–823 K. Our simulations also reveal that Li+ in the amorphous Li2Si2O5 diffuses via a hopping mechanism between the nearest sites in the channels formed by two adjacent SiO4 layers.},
doi = {10.1149/2.1291607jes},
journal = {Journal of the Electrochemical Society},
number = 7,
volume = 163,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2)
journal, April 2008


Ab initio molecular dynamics simulations of short-range order in Zr 50 Cu 45 Al 5 and Cu 50 Zr 45 Al 5 metallic glasses
journal, February 2016


X-ray study of lithium disilicate glass: High pressure densification and polyamorphism
journal, March 2014


High lithium ion conducting glass-ceramics in the system Li2S–P2S5
journal, October 2006


Progress and prospective of solid-state lithium batteries
journal, February 2013


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Characterization of the Structural and Electronic Properties of Crystalline Lithium Silicates
journal, November 2006

  • Du, Jincheng; Corrales, L. René
  • The Journal of Physical Chemistry B, Vol. 110, Issue 45
  • DOI: 10.1021/jp056879s

Structural requirements for fast lithium ion migration in Li10GeP2S12
journal, January 2012

  • Adams, Stefan; Prasada Rao, R.
  • Journal of Materials Chemistry, Vol. 22, Issue 16
  • DOI: 10.1039/c2jm16688g

Synthesis of lithium silicates
journal, December 1998


Computational study of structural, elastic and electronic properties of lithium disilicate (Li 2 Si 2 O 5 ) glass-ceramic
journal, April 2014

  • Biskri, Zine Elabidine; Rached, Habib; Bouchear, Merzoug
  • Journal of the Mechanical Behavior of Biomedical Materials, Vol. 32
  • DOI: 10.1016/j.jmbbm.2013.10.029

Computer modeling of lithium phosphate and thiophosphate electrolyte materials
journal, August 2011


Recent progress in solid oxide and lithium ion conducting electrolytes research
journal, April 2006


Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses
journal, October 1993


All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON
journal, December 2009


The haven ratio in fast ionic conductors
journal, October 1982


Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Property Evolution of Al 2 O 3 Coated and Uncoated Si Electrodes: A First Principles Investigation
journal, January 2014

  • Kim, Sung-Yup; Qi, Yue
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0301414jes

Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide
journal, November 2000


Fast Li⊕ Conducting Ceramic Electrolytes
journal, February 1996


TEM and XRD study of early crystallization of lithium disilicate glasses
journal, December 2003


Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries
journal, October 2012


High pressure densification of lithium silicate glasses
journal, September 2000


Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
journal, August 2015


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

An X-ray diffraction study of shock-wave-densified SiO 2 glasses
journal, May 2002


Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates
journal, January 2012

  • Lepley, N. D.; Holzwarth, N. A. W.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes113225

Phase Relationship and Ionic Conductivity in Na–SrSiO 3 Ionic Conductor
journal, September 2015

  • Jee, Youngseok; Zhao, Xuan; Lei, Xueling
  • Journal of the American Ceramic Society, Vol. 99, Issue 1
  • DOI: 10.1111/jace.13925

Extended structures in crystalline phyllosilicates: silica ring systems in lithium, rubidium, cesium, and cesium/lithium phyllosilicate
journal, November 1994

  • de Jong, B. H. W. S.; Slaats, P. G. G.; Supèr, H. T. J.
  • Journal of Non-Crystalline Solids, Vol. 176, Issue 2-3
  • DOI: 10.1016/0022-3093(94)90074-4

Structures and rearrangements of LiCl clusters
journal, June 2006

  • Croteau, T.; Patey, G. N.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2208619

First-principles molecular dynamics modeling of the LiCl–KCl molten salt system
journal, February 2014


Mixed Alkali Systems: Structure and 29 Si MASNMR of Li 2 Si 2 O 5 and K 2 Si 2 O 5
journal, October 1998

  • de Jong, B. H. W. S.; Supèr, H. T. J.; Spek, A. L.
  • Acta Crystallographica Section B Structural Science, Vol. 54, Issue 5
  • DOI: 10.1107/s0108768198001062

Effect of Concentration on the Energetics and Dynamics of Li Ion Transport in Anatase and Amorphous TiO 2
journal, July 2011

  • Yildirim, Handan; Greeley, Jeffrey; Sankaranarayanan, Subramanian K. R. S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 31
  • DOI: 10.1021/jp202514j

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

The structure of metastable lithium disilicate, Li2Si2O5
journal, March 1990

  • Smith, R. I.; Howie, R. A.; West, A. R.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 46, Issue 3
  • DOI: 10.1107/s010827018900750x

Sol?Gel Preparation and Characterization of Lithium Disilicate Glass?Ceramic
journal, May 2007


Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Novel Fast Lithium Ion Conduction in Garnet-Type Li 5 La 3 M 2 O 12 (M = Nb, Ta)
journal, March 2003


Review of crystalline lithium-ion conductors suitable for high temperature battery applications
journal, December 1997


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

On the cause of conductivity degradation in sodium strontium silicate ionic conductor
journal, January 2015

  • Jee, Youngseok; Zhao, Xuan; Huang, Kevin
  • Chemical Communications, Vol. 51, Issue 47
  • DOI: 10.1039/C5CC02638E

Amorphous Na 2 Si 2 O 5 as a fast Na + conductor: an ab initio molecular dynamics simulation
journal, January 2015

  • Lei, Xueling; Jee, Youngseok; Huang, Kevin
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA04474J

Nature of conductivity in SrSiO 3 -based fast ion conductors
journal, January 2014

  • Tealdi, C.; Malavasi, L.; Uda, I.
  • Chem. Commun., Vol. 50, Issue 94
  • DOI: 10.1039/C4CC07025A

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C
journal, April 2000