DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion

Abstract

Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors for chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [3]; ORCiD logo [4];  [5]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  3. Aarhus Univ. (Denmark). iNANO. Dept. of Physics and Astronomy
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Kavli Energy NanoSciences Inst.
  5. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Kavli Energy NanoSciences Inst.
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Office of Naval Research (ONR) (United States); Academy of Sciences Leopoldina (Germany)
OSTI Identifier:
1436639
Grant/Contract Number:  
AC02-05CH11231; SC0010409; LPDS 2014-09
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 34; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bronner, Christopher, Marangoni, Tomas, Rizzo, Daniel J., Durr, Rebecca A., Jorgensen, Jakob Holm, Fischer, Felix R., and Crommie, Michael F. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.7b02896.
Bronner, Christopher, Marangoni, Tomas, Rizzo, Daniel J., Durr, Rebecca A., Jorgensen, Jakob Holm, Fischer, Felix R., & Crommie, Michael F. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion. United States. https://doi.org/10.1021/acs.jpcc.7b02896
Bronner, Christopher, Marangoni, Tomas, Rizzo, Daniel J., Durr, Rebecca A., Jorgensen, Jakob Holm, Fischer, Felix R., and Crommie, Michael F. Tue . "Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion". United States. https://doi.org/10.1021/acs.jpcc.7b02896. https://www.osti.gov/servlets/purl/1436639.
@article{osti_1436639,
title = {Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion},
author = {Bronner, Christopher and Marangoni, Tomas and Rizzo, Daniel J. and Durr, Rebecca A. and Jorgensen, Jakob Holm and Fischer, Felix R. and Crommie, Michael F.},
abstractNote = {Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors for chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.},
doi = {10.1021/acs.jpcc.7b02896},
journal = {Journal of Physical Chemistry. C},
number = 34,
volume = 121,
place = {United States},
year = {Tue Aug 08 00:00:00 EDT 2017},
month = {Tue Aug 08 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Schematic representation of the reduction in bond dissociation barrier for iodinated molecular precursors compared to brominated precursors. (b) Structure of the iodinated (1) and brominated (2) molecular precursors. (c) poly-1 obtained through surface-catalyzed step growth polymerization. (d) Fully cyclized chevron GNR 4.

Save / Share:

Works referenced in this record:

Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
journal, December 1996


Peculiar width dependence of the electronic properties of carbon nanoribbons
journal, January 2006


Energy Band-Gap Engineering of Graphene Nanoribbons
journal, May 2007


Energy Gaps in Graphene Nanoribbons
journal, November 2006


Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
journal, December 2006

  • Barone, Verónica; Hod, Oded; Scuseria, Gustavo E.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0617033

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Spatially resolving edge states of chiral graphene nanoribbons
journal, May 2011

  • Tao, Chenggang; Jiao, Liying; Yazyev, Oleg V.
  • Nature Physics, Vol. 7, Issue 8
  • DOI: 10.1038/nphys1991

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
journal, April 2009

  • Kosynkin, Dmitry V.; Higginbotham, Amanda L.; Sinitskii, Alexander
  • Nature, Vol. 458, Issue 7240
  • DOI: 10.1038/nature07872

Narrow graphene nanoribbons from carbon nanotubes
journal, April 2009


Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons
journal, December 2010

  • Shimizu, T.; Haruyama, J.; Marcano, D. C.
  • Nature Nanotechnology, Vol. 6, Issue 1
  • DOI: 10.1038/nnano.2010.249

Experimental observation of the quantum Hall effect and Berry's phase in graphene
journal, November 2005

  • Zhang, Yuanbo; Tan, Yan-Wen; Stormer, Horst L.
  • Nature, Vol. 438, Issue 7065, p. 201-204
  • DOI: 10.1038/nature04235

Nano-architectures by covalent assembly of molecular building blocks
journal, October 2007

  • Grill, Leonhard; Dyer, Matthew; Lafferentz, Leif
  • Nature Nanotechnology, Vol. 2, Issue 11
  • DOI: 10.1038/nnano.2007.346

Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length
journal, February 2009


Porous graphenes: two-dimensional polymer synthesis with atomic precision
journal, January 2009

  • Bieri, Marco; Treier, Matthias; Cai, Jinming
  • Chemical Communications, Issue 45
  • DOI: 10.1039/b915190g

Synthesis of Polyphenylene Molecular Wires by Surface-Confined Polymerization
journal, March 2009


Two-Dimensional Graphene Nanoribbons
journal, April 2008

  • Yang, Xiaoyin; Dou, Xi; Rouhanipour, Ali
  • Journal of the American Chemical Society, Vol. 130, Issue 13
  • DOI: 10.1021/ja710234t

Graphitic Nanoribbons with Dibenzo[ e,l ]pyrene Repeat Units: Synthesis and Self-Assembly
journal, September 2009

  • Fogel, Yulia; Zhi, Linjie; Rouhanipour, Ali
  • Macromolecules, Vol. 42, Issue 18
  • DOI: 10.1021/ma901142g

Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons
journal, January 2014

  • Vo, Timothy H.; Shekhirev, Mikhail; Kunkel, Donna A.
  • Chem. Commun., Vol. 50, Issue 32
  • DOI: 10.1039/C4CC00885E

Large-scale solution synthesis of narrow graphene nanoribbons
journal, February 2014

  • Vo, Timothy H.; Shekhirev, Mikhail; Kunkel, Donna A.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4189

Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons
journal, December 2013

  • Narita, Akimitsu; Feng, Xinliang; Hernandez, Yenny
  • Nature Chemistry, Vol. 6, Issue 2
  • DOI: 10.1038/nchem.1819

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)
journal, May 2012


Voltage-dependent conductance of a single graphene nanoribbon
journal, October 2012

  • Koch, Matthias; Ample, Francisco; Joachim, Christian
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.169

Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons
journal, December 2012

  • Huang, Han; Wei, Dacheng; Sun, Jiatao
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00983

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Electronic structure changes during the surface-assisted formation of a graphene nanoribbon
journal, January 2014

  • Bronner, Christopher; Utecht, Manuel; Haase, Anton
  • The Journal of Chemical Physics, Vol. 140, Issue 2
  • DOI: 10.1063/1.4858855

Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study
journal, May 2014

  • Simonov, Konstantin A.; Vinogradov, Nikolay A.; Vinogradov, Alexander S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 23
  • DOI: 10.1021/jp502215m

Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy
journal, January 2014

  • Batra, Arunabh; Cvetko, Dean; Kladnik, Gregor
  • Chem. Sci., Vol. 5, Issue 11
  • DOI: 10.1039/C4SC01584C

Tracking and Removing Br during the On-Surface Synthesis of a Graphene Nanoribbon
journal, December 2014

  • Bronner, Christopher; Björk, Jonas; Tegeder, Petra
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp5106218

Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons
journal, February 2012

  • Blankenburg, Stephan; Cai, Jinming; Ruffieux, Pascal
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203129a

Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons
journal, September 2011

  • Björk, Jonas; Stafström, Sven; Hanke, Felix
  • Journal of the American Chemical Society, Vol. 133, Issue 38
  • DOI: 10.1021/ja205857a

Termini of Bottom-Up Fabricated Graphene Nanoribbons
journal, January 2013

  • Talirz, Leopold; Söde, Hajo; Cai, Jinming
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311099k

Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces
journal, April 2013

  • Björk, Jonas; Hanke, Felix; Stafström, Sven
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja400304b

On-Surface Covalent Linking of Organic Building Blocks on a Bulk Insulator
journal, September 2011

  • Kittelmann, Markus; Rahe, Philipp; Nimmrich, Markus
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn2033192

Interchain Interactions Mediated by Br Adsorbates in Arrays of Metal–Organic Hybrid Chains on Ag(111)
journal, July 2011

  • Park, Jihun; Kim, Kye Yeop; Chung, Kyung-Hoon
  • The Journal of Physical Chemistry C, Vol. 115, Issue 30
  • DOI: 10.1021/jp203129f

Surface-supported 2D heterotriangulene polymers
journal, January 2011

  • Bieri, Marco; Blankenburg, Stephan; Kivala, Milan
  • Chemical Communications, Vol. 47, Issue 37
  • DOI: 10.1039/c1cc12490k

On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111)
journal, January 2014

  • Eichhorn, Johanna; Strunskus, Thomas; Rastgoo-Lahrood, Atena
  • Chem. Commun., Vol. 50, Issue 57
  • DOI: 10.1039/C4CC02757D

Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction
journal, August 2011

  • Wang, Weihua; Shi, Xingqiang; Wang, Shiyong
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja204956b

Combined Photoemission and Scanning Tunneling Microscopy Study of the Surface-Assisted Ullmann Coupling Reaction
journal, March 2014

  • Chen, Min; Xiao, Jie; Steinrück, Hans-Peter
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp4121468

Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver
journal, January 2014

  • Gutzler, Rico; Cardenas, Luis; Lipton-Duffin, Josh
  • Nanoscale, Vol. 6, Issue 5
  • DOI: 10.1039/C3NR05710K

Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity
journal, August 2014

  • Han, Patrick; Akagi, Kazuto; Federici Canova, Filippo
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn5028642

Covalent, Organometallic, and Halogen-Bonded Nanomeshes from Tetrabromo-Terphenyl by Surface-Assisted Synthesis on Cu(111)
journal, June 2014

  • Fan, Qitang; Wang, Cici; Liu, Liming
  • The Journal of Physical Chemistry C, Vol. 118, Issue 24
  • DOI: 10.1021/jp5037475

Synthesis and electronic structure of a two dimensional π-conjugated polythiophene
journal, January 2013

  • Cardenas, Luis; Gutzler, Rico; Lipton-Duffin, Josh
  • Chemical Science, Vol. 4, Issue 8
  • DOI: 10.1039/c3sc50800e

Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity
journal, November 2010

  • Bieri, Marco; Nguyen, Manh-Thuong; Gröning, Oliver
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja107947z

Controlling on-surface polymerization by hierarchical and substrate-directed growth
journal, January 2012

  • Lafferentz, L.; Eberhardt, V.; Dri, C.
  • Nature Chemistry, Vol. 4, Issue 3
  • DOI: 10.1038/nchem.1242

Dehalogenation and Coupling of a Polycyclic Hydrocarbon on an Atomically Thin Insulator
journal, June 2014

  • Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P.
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn501906w

On-Surface Ullmann Coupling: The Influence of Kinetic Reaction Parameters on the Morphology and Quality of Covalent Networks
journal, July 2014

  • Eichhorn, Johanna; Nieckarz, Damian; Ochs, Oliver
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn501567p

On-surface radical addition of triply iodinated monomers on Au(111)—the influence of monomer size and thermal post-processing
journal, July 2012


Adsorption of iodobenzene (C6H5I) on Au(111) surfaces and production of biphenyl (C6H5–C6H5)
journal, September 2001


Sonogashira Coupling on an Extended Gold Surface in Vacuo: Reaction of Phenylacetylene with Iodobenzene on Au(111)
journal, June 2010

  • Kanuru, Vijay K.; Kyriakou, Georgios; Beaumont, Simon K.
  • Journal of the American Chemical Society, Vol. 132, Issue 23
  • DOI: 10.1021/ja1011542

Control of electronic properties of triphenylene by substitution
journal, January 2012


Scanning Tunneling Microscopy and Density Functional Theory Studies of Adatom-Involved Adsorption of Methylnitrene on Copper(110) Surface
journal, May 2013

  • Chen, Po-Tuan; Pai, Woei Wu; Chang, Shih-Wei
  • The Journal of Physical Chemistry C, Vol. 117, Issue 23
  • DOI: 10.1021/jp401288h

Characterization of one-dimensional molecular chains of 4,4′-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy
journal, March 2015

  • Zhou, Jing; Li, Yan; Zahl, Percy
  • The Journal of Chemical Physics, Vol. 142, Issue 10
  • DOI: 10.1063/1.4906046

Ballbot-type motion of N-heterocyclic carbenes on gold surfaces
journal, October 2016

  • Wang, Gaoqiang; Rühling, Andreas; Amirjalayer, Saeed
  • Nature Chemistry, Vol. 9, Issue 2
  • DOI: 10.1038/nchem.2622

The role of the crystalline face in the ordering of 6-mercaptopurine self-assembled monolayers on gold
journal, January 2016

  • Lobo Maza, Flavia; Grumelli, Doris; Carro, Pilar
  • Nanoscale, Vol. 8, Issue 39
  • DOI: 10.1039/C6NR06148F

Solution Preparation of Two-Dimensional Covalently Linked Networks by Polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111)
journal, March 2013

  • Eder, Georg; Smith, Emily F.; Cebula, Izabela
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400337v

Works referencing / citing this record:

On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons
journal, January 2018

  • Moreno, Cesar; Paradinas, Markos; Vilas-Varela, Manuel
  • Chemical Communications, Vol. 54, Issue 68
  • DOI: 10.1039/c8cc04830d

Modified Engineering of Graphene Nanoribbons Prepared via On‐Surface Synthesis
journal, December 2019


On-surface synthesis of 2D COFs on Cu(111) via the formation of thermodynamically stable organometallic networks as the template
journal, January 2019

  • Wang, Cheng-Xin; Chen, Jian-Le; Shu, Chen-Hui
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 24
  • DOI: 10.1039/c9cp01843c

Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
journal, February 2018


Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
journal, February 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.