DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

Abstract

Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

Authors:
 [1];  [2]
  1. Temple Univ., Philadelphia, PA (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434893
Alternate Identifier(s):
OSTI ID: 1235377
Grant/Contract Number:  
FG02-07ER15920
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 3; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Complex solids; Polarizability; Intermolecular forces; Interpolation; Electrons Ab initio calculations; Density functional theory; Plasmons; Semiconductor device modeling

Citation Formats

Tao, Jianmin, and Rappe, Andrew M. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability. United States: N. p., 2016. Web. doi:10.1063/1.4940397.
Tao, Jianmin, & Rappe, Andrew M. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability. United States. https://doi.org/10.1063/1.4940397
Tao, Jianmin, and Rappe, Andrew M. Wed . "Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability". United States. https://doi.org/10.1063/1.4940397. https://www.osti.gov/servlets/purl/1434893.
@article{osti_1434893,
title = {Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability},
author = {Tao, Jianmin and Rappe, Andrew M.},
abstractNote = {Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.},
doi = {10.1063/1.4940397},
journal = {Journal of Chemical Physics},
number = 3,
volume = 144,
place = {United States},
year = {Wed Jan 20 00:00:00 EST 2016},
month = {Wed Jan 20 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Long-range interaction for dimers of atmospheric interest: dispersion, induction and electrostatic contributions for O2O2, N2N2 and O2N2
journal, December 2010

  • Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I.
  • Journal of Computational Chemistry, Vol. 32, Issue 2
  • DOI: 10.1002/jcc.21619

Dispersion interactions from a local polarizability model
journal, June 2010


Exchange-hole dipole moment and the dispersion interaction revisited
journal, October 2007

  • Becke, Axel D.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 127, Issue 15
  • DOI: 10.1063/1.2795701

Adhesion and electronic structure of graphene on hexagonal boron nitride substrates
journal, November 2011


Exchange-hole dipole moment and the dispersion interaction
journal, April 2005

  • Becke, Axel D.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 122, Issue 15
  • DOI: 10.1063/1.1884601

Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H 2 O, and NH 3
journal, June 1989

  • Rijks, W.; Wormer, P. E. S.
  • The Journal of Chemical Physics, Vol. 90, Issue 11
  • DOI: 10.1063/1.456317

Comprehensive Benchmarking of a Density-Dependent Dispersion Correction
journal, October 2011

  • Steinmann, Stephan N.; Corminboeuf, Clemence
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 11
  • DOI: 10.1021/ct200602x

Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?
journal, February 2012

  • Hod, Oded
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 4
  • DOI: 10.1021/ct200880m

Frequency‐dependent polarizabilities of O 2 and van der Waals coefficients of dimers containing O 2
journal, January 1994

  • Hettema, H.; Wormer, P. E. S.; Jo/rgensen, P.
  • The Journal of Chemical Physics, Vol. 100, Issue 2
  • DOI: 10.1063/1.467256

Physical Adsorption: Theory of van der Waals Interactions between Particles and Clean Surfaces
journal, March 2014


Communication: Non-additivity of van der Waals interactions between nanostructures
journal, October 2014

  • Tao, Jianmin; Perdew, John P.
  • The Journal of Chemical Physics, Vol. 141, Issue 14
  • DOI: 10.1063/1.4897957

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
journal, May 2006

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 124, Issue 17
  • DOI: 10.1063/1.2190220

Local polarizabilities and dispersion energy coefficients
journal, June 2008


An Assessment of the vdW-TS Method for Extended Systems
journal, March 2012

  • Al-Saidi, W. A.; Voora, Vamsee K.; Jordan, Kenneth D.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 4
  • DOI: 10.1021/ct200618b

Polarizabilities and hyperpolarizabilities of carbon dioxide
journal, September 1990

  • Maroulis, George; Thakkar, Ajit J.
  • The Journal of Chemical Physics, Vol. 93, Issue 6
  • DOI: 10.1063/1.458749

Ab initio dispersion coefficients for interactions involving rare‐gas atoms
journal, September 1992

  • Thakkar, Ajit J.; Hettema, Hinne; Wormer, Paul E. S.
  • The Journal of Chemical Physics, Vol. 97, Issue 5
  • DOI: 10.1063/1.463012

Weakly Bonded Complexes of Aliphatic and Aromatic Carbon Compounds Described with Dispersion Corrected Density Functional Theory
journal, August 2007

  • Tapavicza, Enrico; Lin, I-Chun; von Lilienfeld, O. Anatole
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 5
  • DOI: 10.1021/ct700049s

TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients of the triplebonded molecules CO, N 2 , CN , and NO +
journal, December 1996

  • Hättig, Christof; Hess, Bernd Artur
  • The Journal of Chemical Physics, Vol. 105, Issue 22
  • DOI: 10.1063/1.472827

Dynamic multipole polarizabilities and long range interaction coefficients for the systems H, Li, Na, K, He, H , H 2 , Li 2 , Na 2 , and K 2
journal, November 1993

  • Spelsberg, Dirk; Lorenz, Thomas; Meyer, Wilfried
  • The Journal of Chemical Physics, Vol. 99, Issue 10
  • DOI: 10.1063/1.465663

Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes
journal, February 2013

  • Risthaus, Tobias; Grimme, Stefan
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 3
  • DOI: 10.1021/ct301081n

Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54
journal, January 1993

  • Bunge, C. F.; Barrientos, J. A.; Bunge, A. V.
  • Atomic Data and Nuclear Data Tables, Vol. 53, Issue 1
  • DOI: 10.1006/adnd.1993.1003

Multipolar polarizabilities and two- and three-body dispersion coefficients for alkali isoelectronic sequences
journal, February 1997

  • Patil, S. H.; Tang, K. T.
  • The Journal of Chemical Physics, Vol. 106, Issue 6
  • DOI: 10.1063/1.473089

Isotropic C6, C8 and C10 interaction coefficients for CH4, C2H6, C3H8, n-C4H10 and cyclo-C3H6
journal, December 1980


Polarization waves and van der Waals cohesion of C 60 fullerite
journal, July 1992


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

A generalized-gradient approximation exchange hole model for dispersion coefficients
journal, January 2011

  • Steinmann, Stephan N.; Corminboeuf, Clemence
  • The Journal of Chemical Physics, Vol. 134, Issue 4
  • DOI: 10.1063/1.3545985

A finite field method for calculating molecular polarizability tensors for arbitrary multipole rank
journal, August 2011

  • Elking, Dennis M.; Perera, Lalith; Duke, Robert
  • Journal of Computational Chemistry, Vol. 32, Issue 15
  • DOI: 10.1002/jcc.21914

Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali–metal, alkaline–earth, and noble gas atoms
journal, May 2010

  • Derevianko, Andrei; Porsev, Sergey G.; Babb, James F.
  • Atomic Data and Nuclear Data Tables, Vol. 96, Issue 3
  • DOI: 10.1016/j.adt.2009.12.002

van der Waals forces in the noble metals
journal, September 1975


Long-Range van der Waals Interaction
journal, July 2013

  • Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn
  • International Journal of Modern Physics B, Vol. 27, Issue 18
  • DOI: 10.1142/S0217979213300119

Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes
journal, April 2015

  • Tao, Jianmin; Yang, Jing; Rappe, Andrew M.
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4918761

Test of a nonempirical density functional: Short-range part of the van der Waals interaction in rare-gas dimers
journal, March 2005

  • Tao, Jianmin; Perdew, John P.
  • The Journal of Chemical Physics, Vol. 122, Issue 11
  • DOI: 10.1063/1.1862242

Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N 2 , CO, Cl 2 , HCl and HBr
journal, October 1993


Accurate van der Waals coefficients from density functional theory
journal, December 2011

  • Tao, J.; Perdew, J. P.; Ruzsinszky, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 1
  • DOI: 10.1073/pnas.1118245108

Performance of meta-GGA Functionals on General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions
journal, November 2012

  • Hao, Pan; Sun, Jianwei; Xiao, Bing
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 1
  • DOI: 10.1021/ct300868x

Van der Waals density functional from multipole dispersion interactions
journal, January 2010

  • Alves de Lima, Neemias
  • The Journal of Chemical Physics, Vol. 132, Issue 1
  • DOI: 10.1063/1.3282265

A benchmark for non-covalent interactions in solids
journal, August 2012

  • Otero-de-la-Roza, A.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 137, Issue 5
  • DOI: 10.1063/1.4738961

Van der Waals coefficients beyond the classical shell model
journal, January 2015

  • Tao, Jianmin; Fang, Yuan; Hao, Pan
  • The Journal of Chemical Physics, Vol. 142, Issue 2
  • DOI: 10.1063/1.4905259

Improved density functional theory results for frequency‐dependent polarizabilities, by the use of an exchange‐correlation potential with correct asymptotic behavior
journal, August 1996

  • van Gisbergen, S. J. A.; Osinga, V. P.; Gritsenko, O. V.
  • The Journal of Chemical Physics, Vol. 105, Issue 8
  • DOI: 10.1063/1.472182

Calculation of dispersion energies
journal, January 2012


Accurate and Efficient Method for Many-Body van der Waals Interactions
journal, June 2012


Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional
journal, January 2014


Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Long-range van der Waals attraction and alkali-metal lattice constants
journal, June 2010


Higher-order C n dispersion coefficients for the alkali-metal atoms
journal, April 2005


Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model
journal, August 2015

  • Otero-de-la-Roza, A.; Johnson, Erin R.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 9
  • DOI: 10.1021/acs.jctc.5b00044

The Theory of Intermolecular Forces
book, January 2013


Reformulation of the D3(Becke–Johnson) Dispersion Correction without Resorting to Higher than C 6 Dispersion Coefficients
journal, June 2015

  • Schröder, Heiner; Creon, Anne; Schwabe, Tobias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00400

Time-dependent Hartree-Fock theory and long-range interactions
journal, March 1967


Role of Dispersive Interactions in Determining Structural Properties of Organic–Inorganic Halide Perovskites: Insights from First-Principles Calculations
journal, July 2014

  • Egger, David A.; Kronik, Leeor
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz5012934

Van der Waals Coefficients for Nanostructures: Fullerenes Defy Conventional Wisdom
journal, December 2012


Works referencing / citing this record:

Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures
journal, February 2018

  • Tao, Jianmin; Perdew, John P.; Tang, Hong
  • The Journal of Chemical Physics, Vol. 148, Issue 7
  • DOI: 10.1063/1.5018572

Hexagonal MASnI 3 exhibiting strong absorption of ultraviolet photons
journal, March 2019

  • Li, Qiaoqiao; Wan, Wenhui; Ge, Yanfeng
  • Applied Physics Letters, Vol. 114, Issue 10
  • DOI: 10.1063/1.5087649

First-principles study of the binding energy between nanostructures and its scaling with system size
journal, April 2018


Hexagonal MASnI$_3$ exhibiting strong absorption of ultraviolet photons
text, January 2019