DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale Lacing by Electrons

Abstract

Abstract The ability to harness the optical or electrical properties of nanoscale particles depends on their assembly in terms of size and spatial characteristics which remains challenging due to lack of size focusing. Electrons provide a clean and focusing agent to initiate the assembly of nanoclusters or nanoparticles. Here an intriguing route is demonstrated to lace gold nanoclusters and nanoparticles in string assembly through electron‐initiated nucleation and aggregative growth of Au(I)‐thiolate motifs on a thin film substrate. This size‐focused assembly is demonstrated by controlling the electron dose under transmission electron microscopic imaging conditions. The Au(I)‐thiolate motifs, in combination with the molecularly mediated alignment, facilitate the interstring electrostatic and intrastring aurophilic interactions, which functions as a molecular template to aid electron‐initiated 1D lacing. The findings demonstrate a hierarchical route for the 1D assemblies with size and spatial tunable catalytic, optical, sensing, and diagnostic properties.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [4];  [3];  [3]
  1. School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 China, Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
  2. Electron and X‐ray Microscopy Nanoscience and Technology Argonne National Laboratory Lemont IL 60439 USA
  3. Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
  4. Corning Incorporated Corning NY 14831 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1433417
Grant/Contract Number:  
DE‐AC02‐06CH11357
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 14 Journal Issue: 20; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Cheng, Han‐Wen, Wang, Jie, Li, Yong‐Jun, Li, Jing, Yan, Shan, Shan, Shiyao, Wang, Lingyan, Skeete, Zakiya, and Zhong, Chuan‐Jian. Nanoscale Lacing by Electrons. Germany: N. p., 2018. Web. doi:10.1002/smll.201800598.
Cheng, Han‐Wen, Wang, Jie, Li, Yong‐Jun, Li, Jing, Yan, Shan, Shan, Shiyao, Wang, Lingyan, Skeete, Zakiya, & Zhong, Chuan‐Jian. Nanoscale Lacing by Electrons. Germany. https://doi.org/10.1002/smll.201800598
Cheng, Han‐Wen, Wang, Jie, Li, Yong‐Jun, Li, Jing, Yan, Shan, Shan, Shiyao, Wang, Lingyan, Skeete, Zakiya, and Zhong, Chuan‐Jian. Tue . "Nanoscale Lacing by Electrons". Germany. https://doi.org/10.1002/smll.201800598.
@article{osti_1433417,
title = {Nanoscale Lacing by Electrons},
author = {Cheng, Han‐Wen and Wang, Jie and Li, Yong‐Jun and Li, Jing and Yan, Shan and Shan, Shiyao and Wang, Lingyan and Skeete, Zakiya and Zhong, Chuan‐Jian},
abstractNote = {Abstract The ability to harness the optical or electrical properties of nanoscale particles depends on their assembly in terms of size and spatial characteristics which remains challenging due to lack of size focusing. Electrons provide a clean and focusing agent to initiate the assembly of nanoclusters or nanoparticles. Here an intriguing route is demonstrated to lace gold nanoclusters and nanoparticles in string assembly through electron‐initiated nucleation and aggregative growth of Au(I)‐thiolate motifs on a thin film substrate. This size‐focused assembly is demonstrated by controlling the electron dose under transmission electron microscopic imaging conditions. The Au(I)‐thiolate motifs, in combination with the molecularly mediated alignment, facilitate the interstring electrostatic and intrastring aurophilic interactions, which functions as a molecular template to aid electron‐initiated 1D lacing. The findings demonstrate a hierarchical route for the 1D assemblies with size and spatial tunable catalytic, optical, sensing, and diagnostic properties.},
doi = {10.1002/smll.201800598},
journal = {Small},
number = 20,
volume = 14,
place = {Germany},
year = {Tue Apr 17 00:00:00 EDT 2018},
month = {Tue Apr 17 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.201800598

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Radicals Are Required for Thiol Etching of Gold Particles
journal, June 2015

  • Dreier, Timothy A.; Ackerson, Christopher J.
  • Angewandte Chemie International Edition, Vol. 54, Issue 32
  • DOI: 10.1002/anie.201502934

Electron-beam irradiation induced shape transformation of Sn–SnO 2 nanocables
journal, November 2006


Synthesis of Gold Nanoparticles from Gold(I)−Alkanethiolate Complexes with Supramolecular Structures through Electron Beam Irradiation in TEM
journal, July 2005

  • Kim, Jong-Uk; Cha, Sang-Ho; Shin, Kyusoon
  • Journal of the American Chemical Society, Vol. 127, Issue 28
  • DOI: 10.1021/ja042423x

The Nucleation and Growth Mechanism of Thiolate-Protected Au Nanoclusters
journal, December 2015

  • Liu, Chunyan; Pei, Yong; Sun, Hui
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b09466

Gold–glutathione supramolecular hydrogels
journal, January 2007

  • Odriozola, Ibon; Loinaz, Iraida; Pomposo, José A.
  • Journal of Materials Chemistry, Vol. 17, Issue 46
  • DOI: 10.1039/b713542d

Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution
journal, July 2004

  • Sau, Tapan K.; Murphy, Catherine J.
  • Journal of the American Chemical Society, Vol. 126, Issue 28
  • DOI: 10.1021/ja047846d

The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model
journal, March 2012

  • Pensa, Evangelina; Cortés, Emiliano; Corthey, Gastón
  • Accounts of Chemical Research, Vol. 45, Issue 8
  • DOI: 10.1021/ar200260p

Total Structure and Electronic Properties of the Gold Nanocrystal Au 36 (SR) 24
journal, November 2012

  • Zeng, Chenjie; Qian, Huifeng; Li, Tao
  • Angewandte Chemie International Edition, Vol. 51, Issue 52
  • DOI: 10.1002/anie.201207098

Nonsuperatomic [Au 23 (SC 6 H 11 ) 16 ] Nanocluster Featuring Bipyramidal Au 15 Kernel and Trimeric Au 3 (SR) 4 Motif
journal, November 2013

  • Das, Anindita; Li, Tao; Nobusada, Katsuyuki
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja409177s

The gold–sulfur interface at the nanoscale
journal, May 2012


Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au(I) Thiolates
journal, April 2010

  • Zhou, Chen; Sun, Ce; Yu, Mengxiao
  • The Journal of Physical Chemistry C, Vol. 114, Issue 17
  • DOI: 10.1021/jp9122584

Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography
journal, June 2013

  • Zeng, Chenjie; Li, Tao; Das, Anindita
  • Journal of the American Chemical Society, Vol. 135, Issue 27
  • DOI: 10.1021/ja404058q

Understanding seed-mediated growth of gold nanoclusters at molecular level
journal, October 2017


Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology
journal, April 2005

  • Love, J. Christopher; Estroff, Lara A.; Kriebel, Jennah K.
  • Chemical Reviews, Vol. 105, Issue 4
  • DOI: 10.1021/cr0300789

From Au(i) organometallic hydrogels to well-defined Au(0) nanoparticles
journal, January 2013

  • Aguiló, Elisabet; Gavara, Raquel; Lima, João Carlos
  • Journal of Materials Chemistry C, Vol. 1, Issue 35
  • DOI: 10.1039/c3tc31168f

Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au 25 Nanoclusters
journal, July 2014

  • Luo, Zhentao; Nachammai, Vairavan; Zhang, Bin
  • Journal of the American Chemical Society, Vol. 136, Issue 30
  • DOI: 10.1021/ja505429f

Structure Determination of [Au 18 (SR) 14 ]
journal, January 2015

  • Das, Anindita; Liu, Chong; Byun, Hee Young
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201410161

Au 99 (SPh) 42 Nanomolecules: Aromatic Thiolate Ligand Induced Conversion of Au 144 (SCH 2 CH 2 Ph) 60
journal, November 2014

  • Nimmala, Praneeth Reddy; Dass, Amala
  • Journal of the American Chemical Society, Vol. 136, Issue 49
  • DOI: 10.1021/ja5103025

Gold Nanoparticle Size Controlled by Polymeric Au(I) Thiolate Precursor Size
journal, January 2008

  • Briñas, Raymond P.; Hu, Minghui; Qian, Luping
  • Journal of the American Chemical Society, Vol. 130, Issue 3
  • DOI: 10.1021/ja076333e

Atomically precise gold nanocrystal molecules with surface plasmon resonance
journal, January 2012

  • Qian, H.; Zhu, Y.; Jin, R.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 3
  • DOI: 10.1073/pnas.1115307109

Kinetically Controlled, High-Yield Synthesis of Au 25 Clusters
journal, January 2008

  • Zhu, Manzhou; Lanni, Eric; Garg, Niti
  • Journal of the American Chemical Society, Vol. 130, Issue 4
  • DOI: 10.1021/ja0782448

Time-resolved monitoring of dynamic self-assembly of Au(i)-thiolate coordination polymers
journal, January 2013

  • Nie, Hui; Li, Minjie; Hao, Yajiao
  • Chemical Science, Vol. 4, Issue 4
  • DOI: 10.1039/c3sc22215b

From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters
journal, October 2012

  • Luo, Zhentao; Yuan, Xun; Yu, Yue
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja306199p

Crystal Structure of the Antiarthritic Drug Gold Thiomalate (Myochrysine):  A Double-Helical Geometry in the Solid State
journal, September 1998

  • Bau, Robert
  • Journal of the American Chemical Society, Vol. 120, Issue 36
  • DOI: 10.1021/ja9819763

Gold-197 Moessbauer spectroscopic data for antiarthritic drugs and related gold(I) thiol derivatives
journal, August 1981

  • Brown, Karen; Parish, R. V.; McAuliffe, Charles A.
  • Journal of the American Chemical Society, Vol. 103, Issue 16
  • DOI: 10.1021/ja00406a047

Formation of a Novel Luminescent Form of Gold(I) Phenylthiolate via Self-Assembly and Decomposition of Isonitrilegold(I) Phenylthiolate Complexes
journal, July 2000

  • Bachman, Robert E.; Bodolosky-Bettis, Sheri A.; Glennon, Shana C.
  • Journal of the American Chemical Society, Vol. 122, Issue 29
  • DOI: 10.1021/ja000973z

Threading plasmonic nanoparticle strings with light
journal, July 2014

  • Herrmann, Lars O.; Valev, Ventsislav K.; Tserkezis, Christos
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5568

Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles
journal, February 2017

  • Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.
  • Nature Reviews Chemistry, Vol. 1, Issue 2
  • DOI: 10.1038/s41570-017-0017

Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system
journal, January 1994

  • Brust, Mathias; Walker, Merryl; Bethell, Donald
  • J. Chem. Soc., Chem. Commun., Vol. 0, Issue 7
  • DOI: 10.1039/C39940000801

Supramolecular Gold Metallogelators: The Key Role of Metallophilic Interactions
journal, December 2014


Synthesis and Characterization of Gold@Gold(I)−Thiomalate Core@Shell Nanoparticles
journal, May 2010

  • Corthey, Gastón; Giovanetti, Lisandro J.; Ramallo-López, José M.
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn100272q

Gold-Based Therapeutic Agents
journal, September 1999


Electron-beam induced synthesis of nanostructures: a review
journal, January 2016

  • Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.
  • Nanoscale, Vol. 8, Issue 22
  • DOI: 10.1039/C6NR01941B

One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties
journal, May 2006