DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries

Abstract

The lithium–sulfur (Li–S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature’s ant-nest structure, this study results in a novel Li–S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li–S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. Finally, high cycling stability in the Li–S batteries, for practical applications, has been achieved with up to 3 mg·cm–2 sulfur loading. Li–S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

Authors:
 [1];  [2];  [3];  [2];  [2];  [2];  [4];  [2];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division. Energy Technologies Area; No. 5 Electronic Research Inst. of the Ministry of Industry and Information Technology, Guangzhou (China). Science and Technology on Reliability Physics and Application of Electronic Component Lab.
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division. Energy Technologies Area
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division. Energy Technologies Area; Guangzhou Automobile Group Co., Ltd., Guangzhou (China)
  4. No. 5 Electronic Research Inst. of the Ministry of Industry and Information Technology, Guangzhou (China). Science and Technology on Reliability Physics and Application of Electronic Component Lab.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); China Scholarship Council
OSTI Identifier:
1433096
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 9; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ant-nest structure; biomimetic; high sulfur ratio; Li-S battery

Citation Formats

Ai, Guo, Dai, Yiling, Mao, Wenfeng, Zhao, Hui, Fu, Yanbao, Song, Xiangyun, En, Yunfei, Battaglia, Vincent S., Srinivasan, Venkat, and Liu, Gao. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b01434.
Ai, Guo, Dai, Yiling, Mao, Wenfeng, Zhao, Hui, Fu, Yanbao, Song, Xiangyun, En, Yunfei, Battaglia, Vincent S., Srinivasan, Venkat, & Liu, Gao. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries. United States. https://doi.org/10.1021/acs.nanolett.6b01434
Ai, Guo, Dai, Yiling, Mao, Wenfeng, Zhao, Hui, Fu, Yanbao, Song, Xiangyun, En, Yunfei, Battaglia, Vincent S., Srinivasan, Venkat, and Liu, Gao. Mon . "Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries". United States. https://doi.org/10.1021/acs.nanolett.6b01434. https://www.osti.gov/servlets/purl/1433096.
@article{osti_1433096,
title = {Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries},
author = {Ai, Guo and Dai, Yiling and Mao, Wenfeng and Zhao, Hui and Fu, Yanbao and Song, Xiangyun and En, Yunfei and Battaglia, Vincent S. and Srinivasan, Venkat and Liu, Gao},
abstractNote = {The lithium–sulfur (Li–S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature’s ant-nest structure, this study results in a novel Li–S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li–S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. Finally, high cycling stability in the Li–S batteries, for practical applications, has been achieved with up to 3 mg·cm–2 sulfur loading. Li–S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.},
doi = {10.1021/acs.nanolett.6b01434},
journal = {Nano Letters},
number = 9,
volume = 16,
place = {United States},
year = {Mon Aug 08 00:00:00 EDT 2016},
month = {Mon Aug 08 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 61 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium batteries: To the limits of lithium
journal, October 2015


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries
journal, May 2013

  • Chen, Hongwei; Dong, Weiling; Ge, Jun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01910

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life
journal, January 2012

  • Xiao, Lifen; Cao, Yuliang; Xiao, Jie
  • Advanced Materials, Vol. 24, Issue 9, p. 1176-1181
  • DOI: 10.1002/adma.201103392

Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries
journal, May 2013

  • Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn401228t

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
journal, January 2013

  • Seh, Zhi Wei; Zhang, Qianfan; Li, Weiyang
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51476e

Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface
journal, May 2014

  • Yao, Hongbin; Zheng, Guangyuan; Hsu, Po-Chun
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4943

Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
journal, August 2014

  • Pang, Quan; Kundu, Dipan; Cuisinier, Marine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5759

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

A review of electrolytes for lithium–sulphur batteries
journal, June 2014


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries
journal, May 2014

  • Gordin, Mikhail L.; Dai, Fang; Chen, Shuru
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501665s

A Flexible Sulfur-Graphene-Polypropylene Separator Integrated Electrode for Advanced Li-S Batteries
journal, November 2014


High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
journal, March 2015

  • Lv, Dongping; Zheng, Jianming; Li, Qiuyan
  • Advanced Energy Materials, Vol. 5, Issue 16, Article No. 1402290
  • DOI: 10.1002/aenm.201402290

Pie-like electrode design for high-energy density lithium–sulfur batteries
journal, November 2015

  • Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9850

3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries
journal, December 2015


High-Capacity Micrometer-Sized Li2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
journal, September 2012

  • Yang, Yuan; Zheng, Guangyuan; Misra, Sumohan
  • Journal of the American Chemical Society, Vol. 134, Issue 37, p. 15387-15394
  • DOI: 10.1021/ja3052206

Novel positive electrode architecture for rechargeable lithium/sulfur batteries
journal, August 2012


Improve Rate Capability of the Sulfur Cathode Using a Gelatin Binder
journal, January 2011

  • Wang, Qinqin; Wang, Weikun; Huang, Yaqin
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3583375

Rechargeable Lithium Sulfur Battery
journal, May 2003

  • Cheon, Sang-Eun; Ko, Ki-Seok; Cho, Ji-Hoon
  • Journal of The Electrochemical Society, Vol. 150, Issue 6, p. A800-A805
  • DOI: 10.1149/1.1571533

Structure and formation of ant transportation networks
journal, February 2011

  • Latty, Tanya; Ramsch, Kai; Ito, Kentaro
  • Journal of The Royal Society Interface, Vol. 8, Issue 62
  • DOI: 10.1098/rsif.2010.0612

Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage
journal, October 2008

  • Zhang, Zhiyong; Wang, Sheng; Ding, Li
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8018802

Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
journal, September 2011

  • Liu, Gao; Xun, Shidi; Vukmirovic, Nenad
  • Advanced Materials, Vol. 23, Issue 40, p. 4679-4683
  • DOI: 10.1002/adma.201102421

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
journal, January 2015


A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density
journal, August 2012


Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery
journal, January 2012

  • Diao, Yan; Xie, Kai; Xiong, Shizhao
  • Journal of The Electrochemical Society, Vol. 159, Issue 4, p. A421-A425
  • DOI: 10.1149/2.060204jes

Li-S Battery Analyzed by UV/Vis in Operando Mode
journal, June 2013

  • Patel, Manu U. M.; Demir-Cakan, Rezan; Morcrette, Mathieu
  • ChemSusChem, Vol. 6, Issue 7
  • DOI: 10.1002/cssc.201300142

New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization
journal, January 2013

  • Waluś, Sylwia; Barchasz, Céline; Colin, Jean-François
  • Chemical Communications, Vol. 49, Issue 72
  • DOI: 10.1039/c3cc43766c

Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications
journal, November 2008

  • Feng, Xinjian; Shankar, Karthik; Varghese, Oomman K.
  • Nano Letters, Vol. 8, Issue 11, p. 3781-3786
  • DOI: 10.1021/nl802096a

Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance
journal, January 2011

  • Ai, Guo; Sun, Wentao; Gao, Xianfeng
  • Journal of Materials Chemistry, Vol. 21, Issue 24
  • DOI: 10.1039/c0jm03867a

Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy
journal, January 2010

  • Elazari, Ran; Salitra, Gregory; Talyosef, Yossi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3479828

Crystal structure of dilithiumsulfíde, Li2S
journal, September 1999

  • Kubel, F.; Bertheville, Β.; Bill, Η.
  • Zeitschrift für Kristallographie - New Crystal Structures, Vol. 214, Issue 3
  • DOI: 10.1515/ncrs-1999-0303

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Works referencing / citing this record:

Elucidating the reaction kinetics of lithium–sulfur batteries by operando XRD based on an open-hollow S@MnO 2 cathode
journal, January 2019

  • Huang, Shaozhuan; Liu, Lixiang; Wang, Ye
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c9ta00199a

Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Recent advances in polysulfide mediation of lithium-sulfur batteries via facile cathode and electrolyte modification
journal, August 2019

  • Fang, Chen; Zhang, Guangzhao; Lau, Jonathan
  • APL Materials, Vol. 7, Issue 8
  • DOI: 10.1063/1.5110525

Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries
journal, January 2018

  • Bao, Weizhai; Liu, Lin; Wang, Chengyin
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702485

Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries
journal, December 2017


Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy
journal, March 2019


A High-Volumetric-Capacity Cathode Based on Interconnected Close-Packed N-Doped Porous Carbon Nanospheres for Long-Life Lithium-Sulfur Batteries
journal, August 2017

  • Hu, Cheng; Kirk, Caroline; Cai, Qiong
  • Advanced Energy Materials, Vol. 7, Issue 22
  • DOI: 10.1002/aenm.201701082

Factors of Kinetics Processes in Lithium–Sulfur Reactions
journal, May 2019


Li 2 S–Embedded copper metal–organic framework cathode with superior electrochemical performance for Li–S batteries
journal, January 2018

  • Feng, Yan; Zhang, Yuliang; Du, Guixiang
  • New Journal of Chemistry, Vol. 42, Issue 16
  • DOI: 10.1039/c8nj02370k

A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium–sulfur batteries
journal, January 2018

  • Liu, Tao; Sun, Shimei; Song, Wei
  • Journal of Materials Chemistry A, Vol. 6, Issue 46
  • DOI: 10.1039/c8ta08521h

Electrocatalysis of polysulfide conversion via sulfur–cobalt CoS2 on a carbon nanotube surface as a cathode for high-performance lithium–sulfur batteries
journal, June 2019

  • Su, Wenxiao; Feng, Wangjun; Wang, Shejun
  • Journal of Solid State Electrochemistry, Vol. 23, Issue 7
  • DOI: 10.1007/s10008-019-04301-w

Deciphering the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando Synchrotron‐Based Characterization Techniques
journal, March 2019

  • Yan, Yingying; Cheng, Chen; Zhang, Liang
  • Advanced Energy Materials, Vol. 9, Issue 18
  • DOI: 10.1002/aenm.201900148

Factors of Kinetics Processes in Lithium–Sulfur Reactions
journal, December 2019