DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conductive Polymer Binder-Enabled SiO–SnxCoyCz Anode for High-Energy Lithium-Ion Batteries

Abstract

In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, by achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Applied Energy Materials Group. Energy Storage and Distributed Resources Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1433093
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 21; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; conductive polymer binder; high capacity anode; lithium-ion battery; practical application; prelithiation

Citation Formats

Zhao, Hui, Fu, Yanbao, Ling, Min, Jia, Zhe, Song, Xiangyun, Chen, Zonghai, Lu, Jun, Amine, Khalil, and Liu, Gao. Conductive Polymer Binder-Enabled SiO–SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. United States: N. p., 2016. Web. doi:10.1021/acsami.6b00312.
Zhao, Hui, Fu, Yanbao, Ling, Min, Jia, Zhe, Song, Xiangyun, Chen, Zonghai, Lu, Jun, Amine, Khalil, & Liu, Gao. Conductive Polymer Binder-Enabled SiO–SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. United States. https://doi.org/10.1021/acsami.6b00312
Zhao, Hui, Fu, Yanbao, Ling, Min, Jia, Zhe, Song, Xiangyun, Chen, Zonghai, Lu, Jun, Amine, Khalil, and Liu, Gao. Tue . "Conductive Polymer Binder-Enabled SiO–SnxCoyCz Anode for High-Energy Lithium-Ion Batteries". United States. https://doi.org/10.1021/acsami.6b00312. https://www.osti.gov/servlets/purl/1433093.
@article{osti_1433093,
title = {Conductive Polymer Binder-Enabled SiO–SnxCoyCz Anode for High-Energy Lithium-Ion Batteries},
author = {Zhao, Hui and Fu, Yanbao and Ling, Min and Jia, Zhe and Song, Xiangyun and Chen, Zonghai and Lu, Jun and Amine, Khalil and Liu, Gao},
abstractNote = {In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, by achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.},
doi = {10.1021/acsami.6b00312},
journal = {ACS Applied Materials and Interfaces},
number = 21,
volume = 8,
place = {United States},
year = {Tue May 10 00:00:00 EDT 2016},
month = {Tue May 10 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries
journal, April 2015


Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries
journal, February 2015

  • Park, Sang-Jae; Zhao, Hui; Ai, Guo
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja511181p

All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries
journal, January 2004

  • Ryu, Ji Heon; Kim, Jae Woo; Sung, Yung-Eun
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 10, p. A306-A309
  • DOI: 10.1149/1.1792242

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Conductive Polymer and Silicon Composite Secondary Particles for a High Area-Loading Negative Electrode
journal, January 2013

  • Xun, Shidi; Xiang, Bin; Minor, Andrew
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.034309jes

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Alloy Design for Lithium-Ion Battery Anodes
journal, January 2007

  • Obrovac, M. N.; Christensen, Leif; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 154, Issue 9, p. A849-A855
  • DOI: 10.1149/1.2752985

High Capacity and High Density Functional Conductive Polymer and SiO Anode for High-Energy Lithium-Ion Batteries
journal, December 2014

  • Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 1
  • DOI: 10.1021/am507376f

GeO 2 –SnCoC Composite Anode Material for Lithium-Ion Batteries
journal, February 2014

  • Liu, Bo; Abouimrane, Ali; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry C, Vol. 118, Issue 8
  • DOI: 10.1021/jp411462v

New Anode Material Based on SiO–Sn x Co y C z for Lithium Batteries
journal, December 2012

  • Liu, Bo; Abouimrane, Ali; Ren, Yang
  • Chemistry of Materials, Vol. 24, Issue 24
  • DOI: 10.1021/cm3017853

A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries
journal, October 2014


Propylene Carbonate (PC)-Based Electrolytes with High Coulombic Efficiency for Lithium-Ion Batteries
journal, October 2013

  • Zhao, Hui; Park, Sang-Jae; Shi, Feifei
  • Journal of The Electrochemical Society, Vol. 161, Issue 1
  • DOI: 10.1149/2.095401jes

Baseline Si electrode fabrication and performance for the battery for Advanced Transportation Technologies Program
journal, May 2015


Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups
journal, March 2015

  • Jia, Zhe; Yuan, Wen; Sheng, Chunjuan
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 11
  • DOI: 10.1002/pola.27567

A novel polymer gel electrolyte: Direct polymerization of ionic liquid from surface of silica nanoparticles
journal, October 2013

  • Hu, Heyi; Yuan, Wen; Zhao, Hui
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 52, Issue 1
  • DOI: 10.1002/pola.26980

Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell
journal, May 2013

  • Yuan, Wen; Zhao, Hui; Hu, Heyi
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 10
  • DOI: 10.1021/am4001858

Low glass transition temperature hole transport material in enhanced-performance solid-state dye-sensitized solar cell
journal, November 2014


Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
journal, September 2011

  • Liu, Gao; Xun, Shidi; Vukmirovic, Nenad
  • Advanced Materials, Vol. 23, Issue 40, p. 4679-4683
  • DOI: 10.1002/adma.201102421

Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design
journal, October 2014

  • Zhao, Hui; Wang, Zhihui; Lu, Peng
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503490h

Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries
journal, August 2015

  • Zhao, Hui; Asfour, Fadi; Fu, Yanbao
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 34
  • DOI: 10.1021/acsami.5b06096

Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries
journal, August 2015

  • Zhao, Hui; Jia, Zhe; Yuan, Wen
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 34
  • DOI: 10.1021/acsami.5b05419

A lithium ion cell containing a non-lithiated cathode
journal, August 2005


A prelithiated carbon anode for lithium-ion battery applications
journal, November 2006


Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode – A high efficient prelithiation method for lithium-ion batteries
journal, August 2014


Electromechanical Probing of Li/Li2CO3 Core/Shell Particles in a TEM
journal, January 2013

  • Xiang, Bin; Wang, Lei; Liu, Gao
  • Journal of The Electrochemical Society, Vol. 160, Issue 3, p. A415-A419
  • DOI: 10.1149/2.018303jes

Works referencing / citing this record:

In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High-Performance Li-Ion Batteries
journal, March 2019


Electrodeposited Cu/MWCNT composite-film: a potential current collector of silicon-based negative-electrodes for Li-Ion batteries
journal, January 2019

  • Shimizu, Masahiro; Ohnuki, Tomonari; Ogasawara, Takayuki
  • RSC Advances, Vol. 9, Issue 38
  • DOI: 10.1039/c9ra03000j

Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives
journal, July 2018


Dual‐Confined SiO Embedded in TiO 2 Shell and 3D Carbon Nanofiber Web as Stable Anode Material for Superior Lithium Storage
journal, April 2019

  • Cai, Xin; Liu, Wen; Yang, Siyuan
  • Advanced Materials Interfaces, Vol. 6, Issue 10
  • DOI: 10.1002/admi.201801800