DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries

Abstract

A sulfonated poly (ether ether ketone) (sPEEK) was tested as the separator in a full alkaline flow battery with 2,6-dihydroxyanthraquinone-ferro/ferricyanide, DHAQ-FeCy, redox couples. Cell performance was compared to that of an identical cell utilizing a perfluorosulfonic acid (PFSA) membrane. Replacement of the PFSA membrane with sPEEK resulted in a 10% power density increase, a 40% decrease in capacity loss per day and an 85-fold decrease in ferricyanide permeation. Though long-term stability of sPEEK in alkaline media requires improvement, these results highlight the potential to produce non-fluorinated membranes with better performance in organic redox flow batteries than the commercially available PFSAs.

Authors:
; ; ; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1433033
Alternate Identifier(s):
OSTI ID: 1510082
Grant/Contract Number:  
AR0000348
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 5; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; alkaline organic redox flow batteries; ion-exchange membranes; sulfonated poly (ether ether ketone)

Citation Formats

De Porcellinis, D., Mecheri, B., D'Epifanio, A., Licoccia, S., Granados-Focil, S., and Aziz, M. J. Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries. United States: N. p., 2018. Web. doi:10.1149/2.1291805jes.
De Porcellinis, D., Mecheri, B., D'Epifanio, A., Licoccia, S., Granados-Focil, S., & Aziz, M. J. Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries. United States. https://doi.org/10.1149/2.1291805jes
De Porcellinis, D., Mecheri, B., D'Epifanio, A., Licoccia, S., Granados-Focil, S., and Aziz, M. J. Thu . "Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries". United States. https://doi.org/10.1149/2.1291805jes.
@article{osti_1433033,
title = {Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries},
author = {De Porcellinis, D. and Mecheri, B. and D'Epifanio, A. and Licoccia, S. and Granados-Focil, S. and Aziz, M. J.},
abstractNote = {A sulfonated poly (ether ether ketone) (sPEEK) was tested as the separator in a full alkaline flow battery with 2,6-dihydroxyanthraquinone-ferro/ferricyanide, DHAQ-FeCy, redox couples. Cell performance was compared to that of an identical cell utilizing a perfluorosulfonic acid (PFSA) membrane. Replacement of the PFSA membrane with sPEEK resulted in a 10% power density increase, a 40% decrease in capacity loss per day and an 85-fold decrease in ferricyanide permeation. Though long-term stability of sPEEK in alkaline media requires improvement, these results highlight the potential to produce non-fluorinated membranes with better performance in organic redox flow batteries than the commercially available PFSAs.},
doi = {10.1149/2.1291805jes},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 165,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2018},
month = {Thu Mar 15 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/2.1291805jes

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Normalized receiving side concentration (Cr) of Ferricyanide as a function of time for Nafion 212 and sPEEK. Permeability is measured in 0.3M K3Fe(CN)6 in 1 M KOH | 1.9 M KOH.

Save / Share:

Works referenced in this record:

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage
journal, January 2017

  • Hu, Bo; DeBruler, Camden; Rhodes, Zayn
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10984

Robust Hydroxide Ion Conducting Poly(biphenyl alkylene)s for Alkaline Fuel Cell Membranes
journal, July 2015


An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Alkaline quinone flow battery
journal, September 2015


Flow Batteries
journal, January 2010

  • Nguyen, Trung; Savinell, Robert F.
  • The Electrochemical Society Interface, Vol. 19, Issue 3
  • DOI: 10.1149/2.F06103if

Thermodynamics of water sorption by perfluorosulphonate (Nafion-117) and polystyrene–divinylbenzene sulphonate (Dowex 50W) ion-exchange resins at 298 ± 1 K
journal, January 1988

  • Pushpa, K. K.; Nandan, Deoki; Iyer, R. M.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 84, Issue 6
  • DOI: 10.1039/f19888402047

Cycling Analysis of a Quinone-Bromide Redox Flow Battery
journal, September 2015

  • Chen, Qing; Eisenach, Louise; Aziz, Michael J.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0081601jes

Mechanism of the Electrochemical Reduction of Phenyl Ketones
journal, March 1958

  • Elving, Philip J.; Leone, Joseph T.
  • Journal of the American Chemical Society, Vol. 80, Issue 5
  • DOI: 10.1021/ja01538a002

Review of material research and development for vanadium redox flow battery applications
journal, July 2013


A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention
journal, February 2017


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
journal, October 2014

  • Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403746

Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium
journal, January 2014

  • Yuan, Zhizhang; Li, Xianfeng; Hu, Jinbo
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 37
  • DOI: 10.1039/C4CP03329A

Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery
journal, December 2008


Economics of vanadium redox flow battery membranes
journal, July 2015


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

SAXS and NMR Analysis for the Cast Solvent Effect on sPEEK Membrane Properties
journal, July 2009

  • Luu, Dinh Xuan; Cho, Eun-Bum; Han, Oc Hee
  • The Journal of Physical Chemistry B, Vol. 113, Issue 30
  • DOI: 10.1021/jp904604u

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.